SGT University, Chandu-Budhera, Gurugram Faculty of Engineering & Technology Department of Computer Science & Engineering

M. Tech. Computer Science & Engineering

Scheme & Syllabus (2021-22 Onwards)

Vision of SGT University

"Driven by Research & Innovation, we aspire to be amongst the top ten Universities in the Country by 2022"

5. No.	Subject Code	Subject Name	Semester	L	Т	Р	С	Category A (Core/ ID/ VAC	Category B (Compulsory/ DE/ BSC/ EAS/ OE/ MC/ II/ MOOC)	Internal	External	Theory/Prac tical
1.		Data Science with Python	1st	3	0	0	3	Core	Compulsory	40	60	Theory
2.		Medical image processing	lst	3	0	0	3	ID	EAS	40	60	Theory
3.		Advanced DBMS	1st	3	0	0	3	Core	Compulsory	40	60	Theory
4.		Department Electives-XVI	1st	3	0	0	3	Core	DE	40	60	Theory
5.		Data Science with Python Lab	1st	0	0	2	1	Core	Compulsory	60	40	Practical
6.		Advanced DBMS Lab	1st	0	0	2	1	Core	Compulsory	60	40	Practical
7.		Medical image processing Lab	1st	0	0	2	1	ID	EAS	60	40	Theory
8.		Department Electives-XVI Lab	1st	0	0	2	1	Core	DE	60	40	Theory
9.		Value Added Courses-I	lst	2	0	0	2	VAC	VAC	40	60	Theory
		Total		14	0	8	18					Í
1.		Advance Software Engineering & Testing	2nd	3	0	0	3	Core	Compulsory	40	60	Theory
2.		Software Project Management	2nd	3	0	0	3	Core	Compulsory	40	60	Theory
3.		Data Mining	2nd	3	0	0	3	Core	Compulsory	40	60	Theory
4.		Department Electives-XVII	2nd	3	0	0	3	Core	DE	40	60	Theory
5.		Advance Software Engineering & Testing Lab	2nd	0	0	4	2	Core	Compulsory	60	40	Practical
6.		Data Mining Lab	2nd	0	0	2	1	Core	Compulsory	60	40	Practical
7.		Department Electives- XVII Lab	2nd	0	0	2	1	Core	DE	60	40	Practical
		Total		12	0	8	16					
1.		Distributed Computing	3rd	3	0	0	3	Core	Compulsory	40	60	Theory
2.		AI & Soft Computing	3rd	3	0	0	3	Core	Compulsory	40	60	Theory
3.		Department Electives-XIII	3rd	3	0	0	3	Core	DE	40	60	Theory
4.		Department Electives-XIV	3rd	3	0	0	3	Core	DE	40	60	Theory
5.		Department Electives-XV	3rd	3	0	0	3	Core	DE	40	60	Theory
6.		AI & Soft Computing Lab	3rd	0	0	4	2	Core	Compulsory	60	40	Practical
7.		Department Electives Lab-XIII	3rd	0	0	2	1	Core	DE	60	40	Practical
8.		Department Electives Lab-XV	3rd	0	0	2	1	Core	DE	60	40	Practical
		Distributed Computing Lab	3rd	0	0	2	1	Core	Compulsory	60	40	Practical
).		Value Added Courses-V	3rd	2	0	0	2	VAC	VAC	60	40	Theory
		Total		17	0	10	22					
1.		Dissertation	4th	-	-	20 W	20	Core	Research Track		100	Practical
	1			1			76					

Mooc Course: Student will be offered various available SWAYAM MOOC Courses in leiu of various regular core (Compulsary and Department Electives)
 Student can opt for Honours degree by earning 18 - 20 additional credits through SWAYAM MOOC courses but with prior permission of the department
 A student can have Honours degree WITH SPECIALIZATION in the particular of his/her branch by earning 18-20 additional credits in particular

	Abbrevation Used:
ID	Interdisciplinary
VAC	Value Addition Course
DE	Department Electives
BSC	Basic Science Courses
EAS	Engineering Applied Science
II	Industrial Internship
MC	Mandatory Courses (Non- Credit

Credit Distribution					
Core	63				
Other (ID +VAC)	13				
Total	76				

Core Ci	redits
Compulsory	24
Department Electives	19
Research Track	20
Total	63

Other (Credits
Interdisci	
plinary	9
(EAS)	
VAC	4
Total	13

5. No.	Subject Code	Subject Name	Semester	L	Т	Р	С	Category A (Core/ ID/ VAC	Category B (Compulsory/ DE/ BSC/ EAS/ OE/ MC/ II/ MOOC)	Internal	External	Theory/Pra tical
1.		Data Science with Python	1st	3	0	0	3	Core	Compulsory	40	60	Theory
2.		Medical image processing	1st	3	0	0	3	ID	EAS	40	60	Theory
3.		Advanced DBMS	1st	3	0	0	3	Core	Compulsory	40	60	Theory
4.		Department Electives-XVI	1st	3	0	0	3	Core	DE	40	60	Theory
5.		Machine learning	1st	3	0	0	3	Core	SE	40	60	Theory
6.		Machine Learning lab	1st	0	0	2	1	Core	SE	60	40	Practical
7.		Data Science with Python Lab	1st	0	0	2	1	Core	Compulsory	60	40	Practical
8.		Advanced DBMS Lab	1st	0	0	2	1	Core	Compulsory	60	40	Practical
9.		Medical image processing Lab	1st	0	0	2	1	ID	EAS	60	40	Theory
10.		Department Electives-XVI Lab	1st	0	0	2	1	Core	DE	60	40	Theory
11.		Value Added Courses-I	lst	2	0	0	2	VAC	VAC	40	60	Theory
11.		Total	150	17	0	10	22	VAC	VAC	40	00	Theory
1.		Advance Software Engineering & Testing	2nd	3	0	0	3	Core	Compulsory	40	60	Theory
2.		Software Project Management	2nd	3	0	0	3	Core	Compulsory	40	60	Theory
3.		Data Mining	2nd	3	0	0	3	Core	Compulsory	40	60	Theory
4.		Department Electives-XVII	2nd	3	0	0	3	Core	DE	40	60	Theory
5.		Streaming Data Analytics	2nd	3	0	0	3	Core	SE	40	60	Theory
6.		Streaming Data Analytics lab	2nd	0	0	2	1	Core	SE	60	40	Practical
7.		Advance Software Engineering & Testing Lab	2nd	0	0	4	2	Core	Compulsory	60	40	Practical
8.		Data Mining Lab	2nd	0	0	2	1	Core	Compulsory	60	40	Practical
9.		Department Electives- XVII Lab	2nd	0	0	2	1	Core	DE	60	40	Practical
		Total		15	0	10	20					
1.		Distributed Computing	3rd	3	0	0	3	Core	Compulsory	40	60	Theory
2.		AI & Soft Computing	3rd	3	0	0	3	Core	Compulsory	40	60	Theory
3.		Domain Specific Predictive Analytics	3rd	3	0	0	3	Core	SE	40	60	Theory
4.		Department Electives-XIII	3rd	3	0	0	3	Core	DE	40	60	Theory
5.		Department Electives-XIV	3rd	3	0	0	3	Core	DE	40	60	Theory
6.		Department Electives-XV	3rd	3	0	0	3	Core	DE	40	60	Theory
7.		AI & Soft Computing Lab	3rd	0	0	4	2	Core	Compulsory	60	40	Practical
8.		Department Electives Lab-XIII	3rd	0	0	2	1	Core	DE	60	40	Practical
9.		Department Electives Lab-XV	3rd	0	0	2	1	Core	DE	60	40	Practical
10.		Distributed Computing Lab	3rd	0	0	2	1	Core	Compulsory	60	40	Practical
10.		Value Added Courses-V	3rd	2	0	0	2	VAC	VAC	60	40	Theory
		Total		20	0	10	25	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10	,
1.	1	Dissertation	4th	-	-	20 W	20	Core	Research Track		100	Practical
	1					20 11	87	000	resourch muck		100	- 1000000

Mooc Course: Student will be offered various available SWAYAM MOOC Courses in leiu of various regular core (Compulsary and Department Electives)
 Student can opt for Honours degree by earning 18 - 20 additional credits through SWAYAM MOOC courses but with prior permission of the department
 A student can have Honours degree WITH SPECIALIZATION in the particular of his/her branch by earning 18-20 additional credits in particular

	Abbrevation Used:
ID	Interdisciplinary
VAC	Value Addition Course
DE	Department Electives
BSC	Basic Science Courses
EAS	Engineering Applied Science
II	Industrial Internship
MC	Mandatory Courses (Non- Credit
SE	Specialization Elective

Credit Distribution							
Core	63						
Other (ID +VAC)	24						
Total	87						

Core Ci	edits
Compulsory	24
Department Electives	19
Research Track	20
Total	63

Other (Credits
Interdisci	
plinary	9
(EAS)	
VAC	4
SE	11
SE	11
Total	24

		M.Tech (C	omputer s	cience &	Enginee	ring)			
			Seme	ster 1st					
S. No.	Subject Code	Subject Name	L	Т	Р	С	Internal	External	Total
1.		Data Science with Python	3	0	0	3	40	60	100
2.		Medical image processing	3	0	0	3	40	60	100
3.		Advanced DBMS	3	0	0	3	40	60	100
4.		Department Electives-XVI	3	0	0	3	40	60	100
5.		Data Science with Python Lab	0	0	2	1	60	40	100
6.		Advanced DBMS Lab	0	0	2	1	60	40	100
7.		Medical image processing Lab	0	0	2	1	60	40	100
8.		Department Electives-XVI Lab	0	0	2	1	60	40	100
9.		Value Added Courses-I	2	0	0	2	40	60	100
		Total	14	0	8	18	440	460	900

Semester 2nd									
S. No.	Subject Code	Subject Name	L	Т	Р	С	Internal	External	Total
1.		Advance Software Engineering & Testing	3	0	0	3	40	60	100
2.		Software Project Management	3	0	0	3	40	60	100
3.		Data Mining	3	0	0	3	40	60	100
4.		Department Electives-XVII	3	0	0	3	40	60	100
5.		Advance Software Engineering & Testing Lab	0	0	4	2	60	40	100
6.		Data Mining Lab	0	0	2	1	60	40	100
7.		Department Electives- XVII Lab	0	0	2	1	60	40	100
		Total	12	0	8	16	340	360	700

		M.Tech (C	omputer s	cience &	Enginee	ering)			
			Seme	ster 3rd				1	
S. No.	Subject Code	Subject Name	L	Т	Р	С	Internal	External	Total
1.		Distributed Computing	3	0	0	3	40	60	100
2.		AI & Soft Computing	3	0	0	3	40	60	100
3.		Department Electives-XIII	3	0	0	3	40	60	100
4.		Department Electives-XIV	3	0	0	3	40	60	100
5.		Department Electives-XV	3	0	0	3	40	60	100
6.		AI & Soft Computing Lab	0	0	4	2	60	40	100
7.		Department Electives Lab-XIII	0	0	2	1	60	40	100
8.		Department Electives Lab-XV	0	0	2	1	60	40	100
9.		Distributed Computing Lab	0	0	2	1	60	40	100
10.		Value Added Courses-V	2	0	0	2	60	40	100
		Total	17	0	10	22	500	500	1000

		M.T	ech (Compu	ter scie	ence & I	Engineer	ing)			
			S	emester	r 4th					
S. No.	Subject Code	Subject Name	L	г	ſ	Р	С	Internal	External	Total
1.		Dissertation		-	-	20 W	20		100	100
		Total					20		100	100

		M.Tech Bigdata Analy	vtics(Con	nputer sc	eience & I	Engineer	ring)		
			Semest	ter 1st					
S. No.	Subject	Subject Name	L	Т	Р	С	Internal	External	Total
1.		Data Science with Python	3	0	0	3	40	60	100
2.		Medical image processing	3	0	0	3	40	60	100
3.		Advanced DBMS	3	0	0	3	40	60	100
4.		Department Electives-XVI	3	0	0	3	40	60	100
5.		Machine learning	3	0	0	3	40	60	100
6.		Machine Learning lab	0	0	2	1	60	40	100
7.		Data Science with Python Lab	0	0	2	1	60	40	100
8.		Advanced DBMS Lab	0	0	2	1	60	40	100
9.		Medical image processing Lab	0	0	2	1	60	40	100
10.		Department Electives-XVI Lab	0	0	2	1	60	40	100
11.		Value Added Courses-I	2	0	0	2	40	60	100
		Total	17	0	10	22	540	560	1100

		M.Tech Bigdata Analy	tics(Con	nputer sc	ience &]	Engineer	ring)		
			Semest	er 2nd					
S. No.	Subject Code	Subject Name	L	Т	P	С	Internal	External	Total
1.		Advance Software Engineering &	3	0	0	3	40	60	100
2.		Software Project Management	3	0	0	3	40	60	100
3.		Data Mining	3	0	0	3	40	60	100
4.		Department Electives-XVII	3	0	0	3	40	60	100
5.		Streaming Data Analytics	3	0	0	3	40	60	100
6.		Streaming Data Analytics lab	0	0	2	1	60	40	100
7.		Advance Software Engineering &	0	0	4	2	60	40	100
8.	1	Data Mining Lab	0	0	2	1	60	40	100
9.		Department Electives- XVII Lab	0	0	2	1	60	40	100
		Total	15	0	10	20	440	460	900

		M.Tech Bigdata Analy	tics(Con	nputer sc	cience & l	Engineer	ring)		
			Semest	er 3rd					
S. No.	Subject Code	Subject Name	L	Т	Р	С	Internal	External	Total
1.		Distributed Computing	3	0	0	3	40	60	100
2.		AI & Soft Computing	3	0	0	3	40	60	100
3.		Domain Specific Predictive Analytics	3	0	0	3	40	60	100
4.		Department Electives-XIII	3	0	0	3	40	60	100
5.		Department Electives-XIV	3	0	0	3	40	60	100
6.		Department Electives-XV	3	0	0	3	40	60	100
7.		AI & Soft Computing Lab	0	0	4	2	60	40	100
8.		Department Electives Lab-XIII	0	0	2	1	60	40	100
9.		Department Electives Lab-XV	0	0	2	1	60	40	100
10.		Distributed Computing Lab	0	0	2	1	60	40	100
11.		Value Added Courses-V	2	0	0	2	60	40	100
		Total	20	0	10	25	540	560	1100

		M.Tech Bigdata An	alytics(Con	nputer so	cience & I	Enginee	ring)		
			Semest	er 4th					
S. No.	Subject Code	Subject Name	L	Т	Р	С	Internal	External	Total
1.		Dissertation	-	-	20 W	20		100	100

				UNIVERSITY UMBRELLA (VALUE ADDI BATCH :	ED/SKILL	ENI	HAN	CEM	ENT	CO	URS	ES)												
				BAICH:	2021-22	Т	1	П		Theo	ory	Theo	ry (I	ntern	al)	Pr	actic	al	Pı	actica	ıl (Int	ernal)	
Sr. No.	Faculty	Semoster	Subject Code	Nomenclature	Theory/ Practical			a.	Credits	Max	Pass	Midterm Assignment	Professional Activities	Max	Pass	Demonstration/Presentatio	Max	Pass		Project/Laboratory Work Midterm	Conduct/Demonstration	Max	Pass Ocered Pass Marks	Scheme of Examinations (Theory+Internal +Practical+Oral/ Theory+Internal +Practical/ Theory+Practical
1	Behavioural	Odd	VASE01001	Managing Student's Mental Health	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
2	Behavioural	Odd	VASE01002	Psychology of Love and Relationship	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
3	Behavioural	Odd	VASE01003	Peace Education	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
4	Behavioural	Odd	VASE01004	Psycho-Socio Issues of Special Children	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
5	Behavioural	Odd	VASE01005	Educational Audiology	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
6	Behavioural	Odd	VASE01006	Psychology of Speech	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
7	Education	Odd	VASE01007	Digital Tools in Education	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
8	Education	Odd	VASE01008	Education in the Era of Pandemic	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
9	Fashion	Odd	VASE01009	Basics of Drawings	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
10	Engineering	Odd	VASE01010	Introduction to MAT Lab	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
11	Engineering	Odd	VASE01011	Solid Waste Management	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
12	Engineering	Odd	VASE01012	Computer Network	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
13	Science	Odd	VASE01013	Cyber Security	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
14	Science	Odd	VASE01014	Occupational Health and Safety	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
15	Science	Odd	VASE01015	Scientivic Writing using LaTeX	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
16	Nursing	Odd	VASE01016	Adolescent Health and Counselling	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
17	Nursing	Odd	VASE01017	Compassionate, Respectful and Caring	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
18	Nursing	Odd	VASE01018	Good Parenting	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
19	Nursing	Odd	VASE01019	Child Abuse	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
20	Nursing	Odd	VASE01020	Fundamentals of Patient Safety	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
21	Hotel Management	Odd	VASE01021	Event Management	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
22	Managemewnt	Odd	VASE01022	Digital and Social Media Marketing	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
23	Managemewnt	Odd	VASE01023	Finance for Non-Finance Professionals	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
24	Managemewnt	Odd	VASE01024	Hsospital Infection Control	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
25	Agricultural	Odd	VASE01025	Agricultural Heritage	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
26	Agricultural	Odd	VASE01026	Mushroom Production	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
27	Agricultural	Odd	VASE01027	Organic Vegetable Production Technology	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
28	Agricultural	Odd	VASE01028	Intellectual Property Rights	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
29	Law	Odd	VASE01029	Competition Law and Policy	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
30	Law	Odd	VASE01030	Real Estate Laws	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
31	Mass Communication	Odd	VASE01031	Public Speaking	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
32	Mass Communication	Odd	VASE01032	Verbal Ability & Critical Reasoning	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
33	Mass Communication	Odd	VASE01033	Literature and Life	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
34	Pharmacy	Odd	VASE01034	Antimicrobinal Resistance	Theory	2	0	0	2		12	10 5	5	20	8								2	0 Theory + Internal
35	Pharmacy	Odd	VASE01035	Professional Code of Ethics in Pharmacy	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
36	Naturopathy	Odd	VASE01036	Yoga for Health and Wellness	Theory	2	0	0	2	50	12	10 5	5	20	8								2	0 Theory + Internal
	Physiotherapy	Odd	VASE01037	Women Health	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
	Physiotherapy	Odd	VASE01038	Exercise for Health Living	Theory	2	0		2	50	12	10 5	5	20	8								2	0 Theory + Internal
39	Ayurveda	Odd	VASE01039	Basics of Sanskrit Language	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
40	Allied	Odd	VASE01040	Basic Course in Biomedical Waste Management	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
41	Allied	Odd	VASE01041	Computer Application in Biology	Theory	2	0	0	2	50	12	10 5	5	20	8								2	0 Theory + Internal
42	Allied	Odd	VASE01042	Food Preservation Techniques	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
43	Allied	Odd	VASE01043	Hospital Patient Handling, Legal and Medical Issues	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal
44	Allied	Odd	VASE01044	Introduction to Web Development	Theory	2	0	0	2	30	12	10 5	5	20	8								2	0 Theory + Internal

	_			L			. 1												
45 Behavioural	Even	VASE02001	Behavioural Skills Training	Theory	2		-	2 3	0	12 10) 5	5	20	8	_				20 Theory + Internal
46 Behavioural	Even	VASE02002	Social Anxiety	Theory	2		0 3	2 3	0	12 10) 5	5	20	8	_				20 Theory + Internal
47 Behavioural	Even	VASE02003	Psychology of Gender	Theory	2		0	-	-	12 10) 5	5	20	8			_	_	20 Theory + Internal
48 Behavioural	Even	VASE02004	Disability & Rehabilitation	Theory	2		0 3	~ ~	0	12 10) 5	5	20	8				-	20 Theory + Internal
49 Behavioural	Even	VASE02005	Applied Behaviour Analyses	Theory	2		0	-	0	12 10) 5	5	20	8			_	_	20 Theory + Internal
50 Behavioural	Even	VASE02006	Psychology of Hearing	Theory	2	0	0	-	0	12 10) 5	5	20	8					20 Theory + Internal
51 Behavioural	Even	VASE02007	Speech & Language Pathology	Theory	2		0	~ ~	-	12 10) 5	5	20	8					20 Theory + Internal
52 Education	Even	VASE02008	Life Long Learning	Theory	2	0	0	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
53 Education	Even	VASE02009	Virtual & Augmented Reality in Education	Theory	2	0	0	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
54 Fashion	Even	VASE02010	Influential Fashion	Theory	2	0	0	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
55 Engineering	Even	VASE02011	3D Painting	Theory	2	0	0	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
56 Engineering	Even	VASE02012	Natural Disaster Mitigation and Management	Theory	2	0	0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
57 Engineering	Even	VASE02013	Computer Hardware and Troubleshooting	Theory	2	0	0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
58 Science	Even	VASE02014	Handwriting and Personality	Theory	2	0	0	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
59 Science	Even	VASE02015	Science for Competition	Theory	2	0	0	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
60 Nursing	Even	VASE02016	HIV and Family Education	Theory	2	0	0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
61 Nursing	Even	VASE02017	Health Workforce Training	Theory	2	0	0	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
62 Nursing	Even	VASE02018	Hi Impact Presentation and Teaching Skill	Theory	2	0	0	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
63 Nursing	Even	VASE02019	Cyberbullying : Rule to Stop	Theory	2	0	0	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
64 Nursing	Even	VASE02020	Professionalism	Theory	2	0	0	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
65 Hotel Management	Even	VASE02021	Entrepreneurship in Hotel Business	Theory	2	0	0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
66 Management	Even	VASE02022	Motivation for Employee at Work	Theory	2	0	0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
67 Management	Even	VASE02023	Basics of Entrepreneurship & Business Plan	Theory	2	0	0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
68 Agricultural	Even	VASE02024	Protected Cultivation	Theory	2	0	0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
69 Agricultural	Even	VASE02025	Landscaping	Theory	2	0	0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
70 Agricultural	Even	VASE02026	Renewable Energy and Green Technology	Theory	2	0	0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
71 Agricultural	Even	VASE02027	Principles of Orgtanic Farming	Theory	2	0	0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
72 Law	Even	VASE02028	Intellectual Property Rights	Theory	2	0	0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
73 Mass Communication	Even	VASE02029	Mobile Journalism	Theory	2	0	0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
74 Mass Communication	Even	VASE02030	Art of Public Speaking & Presentation Skills	Theory	2	0	0 3	2 3	:0 1	12 10) 5	5	20	8					20 Theory + Internal
75 Mass Communication	Even	VASE02031	Cinematic Study and Indian Society	Theory	2		0 3	2 3	0	12 10) 5	5	20	8					20 Theory + Internal
76 Pharmacy	Even	VASE02032	Impact of Chemical Hazards	Theory	2		0 3		0 1	12 10) 5	5	20	8					20 Theory + Internal
77 Pharmacy	Even	VASE02032	Rational Use of Medicines	Theory	2		-	-		12 10) 5	5	20	8					20 Theory + Internal
78 Naturopathy	Even	VASE02033	Self Management of Excessive Tension	Theory	2		0 2		-	12 10) 5	5	20	8					20 Theory + Internal
79 Physiotherapy	Even	VASE02035	Introduction to Community Health & Fitness	Theory	2		0 3	-		12 10) 5	5	20	8					20 Theory + Internal
80 Physiotherapy	Even	VASE02036	Geriatric Care	Theory	2		0 2	-	-	12 10	1 5	5	20	8					20 Theory + Internal
81 Allied	Even	VASE02030 VASE02037	Microbes in Everyday Life	Theory	2		0 3	-	-	12 10	5	5	20	8					20 Theory + Internal
82 Allied	Even	VASE02037 VASE02038	Basic Knowledge on Hospital Laboratories	Theory	2		0 3	-		12 10	5	5	20	8					20 Theory + Internal
83 Allied	Even	VASE02038 VASE02039	Vaccines and its Applications	Theory	2	-	0 3	-		12 14	15	5	20	•					20 Theory + Internal
84 Allied	Even	VASE02039 VASE02040	Nutrition and Wellnes	Theory	2	-	0 3	~ ~	0	12 10	1 5	5	20	0					20 Theory + Internal
85 Allied	Even	VASE02040 VASE02041	Radiation Hazards and Protection	Theory	2		0 3	-	-	12 10	15	5	20	•					20 Theory + Internal
85 Allied 86 Allied	Even	VASE02041 VASE02042	Medical Equipment Handling	Theory	2		0.	-		12 10	, , ,	5	20	0					20 Theory + Internal 20 Theory + Internal
ou Allied	Even	VASE02042	weatcar Equipment Handling	1 neory	2	U	υ.	4 3		12 10	, ,	2	20	6					i neory + internal

Semester 1st

Python for Data Science

1. Name of the Depar	tment- Computer	Science & Engineering				
2. Course Name	Python for	L	Т		Р	
	Data Science					
3. Course Code		3	0		4	
4. Type of Course (us	e tick mark)	Core (✓)	PE()		OE ()	
5. Pre-requisite (if	Basic Python	6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	0	(🗸)	Sem()	Sem ()
7. Total Number of L	ectures, Tutorials,	Practical (assuming 12	weeks o	f one ser	nester)	
Lectures = 36		Tutorials = 0	Practic	al = 0		
8. Course Description	1		-			
Data Science techniques	s enable us to autor	natically extract features	s from da	ita so as	to solve p	oredictive

Data Science techniques enable us to automatically extract features from data so as to solve predictive tasks, such as speech recognition, object recognition, machine translation, question-answering, anomaly detection, medical diagnosis and prognosis, automatic algorithm configuration, personalization, robot control, time series forecasting, and much more. Learning systems adapt so that they can solve new tasks, related to previously encountered tasks, more efficiently.

9. LearningObjectives:

- 1. To aware students about the data science.
- 2. To promote the technique of merged data science and opportunities in domain.
- 3. To provide deep knowledge of data visualization in different data sets.
- 4. To aware the students about the machine learning algorithms.

10. Course Outcomes (COs):

- The students will be able to: -
- 1. Identify the need for data science and solve basic problems using Python built-in data types and their methods.
- 2. Employ efficient storage and data operations using NumPy arrays.
- 3. Apply powerful data manipulations using Pandas.
- 4. Do data preprocessing and visualization using Pandas

11. Unit wise detailed content

Unit-1	Number of	
	lectures = 9	
Introduction to Data Sc	ience - Why Python	? - Essential Python libraries - Python Introduction- Features,
Identifiers, Reserved wo	ords, Indentation, Co	mments, Built-in Data types and their Methods: Strings, List,
Tuples, Dictionary, Set	- Type Conversion- (Operators. Decision Making- Looping- Loop Control statement-
Math and Random numb	er functions. User def	ined functions - function arguments & its types.
Unit – 2	Number of	
	lectures = 9	
NumPy Basics: Arrays a	and Vectorized Comp	utation- The NumPy ndarray- Creating ndarrays- Data Types for
ndarrays- Arithmetic wit	th NumPy Arrays- Ba	sic Indexing and Slicing - Boolean Indexing-Transposing Arrays
and Swapping Axes. Ur	niversal Functions: Fa	ast Element-Wise Array Functions- Mathematical and Statistical

Methods-SortingUnique and Other Set Logic.

Unit – 3	Number lectures								
ntroduction to	pandas Data	Structures:	Series,	DataFrame	e, Essent	ial Fu	inctionalit	y: Dro	pping
ummarizing and	l Computing De	escriptive Sta	tistics-	Unique Va	lues, Valu	ue Cou	ints, and	Membe	ership
Reading and Writ	ing Data in Text	Format.Cond	cept of D	ata Visuali	zation, Li	braries	for Data	Visualiz	ation
Aatplotlib in-dep	h, Seaborn in-de	pth							
Unit – 4	Number	of							
	lectures	-							
Data Cleaning a									
Replacing Value								nıng, Ma	achine
Learning algorithm	ns, Supervised Le	earning, Unsup	bervised l	Learning, R	einforceme	ent Lea	rning		
12. Brief Descri	ntion of solf_log	rning / E-le	orning	omnonon					
12. Difei Desen	phon of sen-ica	mmg/L^{-10}	arning (omponen					
						l and c	hoose the	relevan	t
The students will	l be encouraged	to learn usin	g the SC	T E-Learn		l and c	hoose the	relevan	t
The students will lectures delivere	Î be encouraged d by subject exp	to learn usin erts of SGT	g the SC	T E-Learn		l and c	hoose the	relevan	t
The students will	Î be encouraged d by subject exp 2-Learning porta	to learn usin erts of SGT l.	g the SC	T E-Learn		l and c	hoose the	relevan	t
The students will lectures delivere The link to the E https://elearning	Î be encouraged d by subject exp 2-Learning porta	to learn usin erts of SGT l.	g the SC	T E-Learn		l and c	hoose the	relevan	t
The students will lectures delivere The link to the E https://elearning category/	l be encouraged d by subject exp Learning porta sgtuniversity.ac	to learn usin erts of SGT l.	g the SC	T E-Learn		l and c	hoose the	relevan	t
The students will lectures delivere The link to the E <u>https://elearning</u> <u>category/</u> 13. Books Reco	l be encouraged d by subject exp Learning porta sgtuniversity.ac	to learn usin erts of SGT l.	g the SC	T E-Learn		l and c	hoose the	relevan	t
The students will lectures delivered The link to the E https://elearning category/ 13. Books Reco Text Books	Î be encouraged d by subject exp 2-Learning porta <u>sgtuniversity.ac</u>	to learn usin erts of SGT l. <u>.in/course-</u>	g the SC Universi	rT E-Learn ty.	ing porta				t
The students will lectures delivered The link to the E https://elearning category/ 13. Books Reco Text Books 1. Rajku	Î be encouraged d by subject exp 2-Learning porta <u>sgtuniversity.ac</u> mmended mar Buyya, Amir	to learn usin erts of SGT l. <u>.in/course-</u>	g the SC Universi	rT E-Learn ty.	ing porta				t
The students will lectures delivered The link to the F https://elearning category/ 13. Books Reco Text Books 1. Rajku Elsev	Î be encouraged d by subject exp 2-Learning porta <u>sgtuniversity.ac</u> mmended mar Buyya, Amir ier,2016.	to learn usin erts of SGT l. .in/course- · Vahid Dastje	g the SC Universi	T E-Learn ty.	ing portal	ples and	l Paradigm	ıs",	
The students will lectures delivered The link to the E https://elearning category/ 13. Books Reco Text Books 1. Rajku Elsev 2. R. Ch	Î be encouraged d by subject exp 2-Learning porta <u>sgtuniversity.ac</u> mmended mar Buyya, Amir ier,2016. andrasekaran," Es	to learn usin erts of SGT l. .in/course- Vahid Dastje	g the SC Universi rdi," Inte	TE-Learn ty. rnet of Thir puting", 2nd	ing portal	ples and	l Paradigm an and Hall	ıs", I/CRC, 2	.015.
The students will lectures delivered The link to the E https://elearning category/ 13. Books Reco Text Books 1. Rajku Elsev 2. R. Ch 3. Amita	Î be encouraged d by subject exp 2-Learning porta <u>sgtuniversity.ac</u> mmended mar Buyya, Amir ier,2016. andrasekaran," Es Kapoor, "Hands	to learn usin erts of SGT l. .in/course- Vahid Dastje	g the SC Universi rdi," Inte	TE-Learn ty. rnet of Thir puting", 2nd	ing portal	ples and	l Paradigm an and Hall	ıs", I/CRC, 2	.015.
The students will lectures delivered The link to the E https://elearning category/ 13. Books Reco Text Books 1. Rajku Elsev 2. R. Ch 3. Amita 14. Reference E	l be encouraged d by subject exp c-Learning porta sgtuniversity.ac mmended mar Buyya, Amir ier,2016. andrasekaran," Es Kapoor, "Hands ooks	to learn usin erts of SGT l. .in/course- Vahid Dastje ssentials of Cl on Artificial i	g the SC Universi rdi," Inte oud comp ntelligen	TE-Learn ty. rnet of Thir puting", 2nd ce for IoT",	ing portal egs: Princip Edition, C 1 st Editio	ples and Chapma on, Pacl	l Paradigm in and Hall ct Publishi	ıs", I/CRC, 2	.015.
The students will lectures delivered The link to the E https://elearning category/ 13. Books Reco Text Books 1. Rajku Elsev 2. R. Ch 3. Amita 14. Reference E 1. John	Î be encouraged d by subject exp 2-Learning porta <u>sgtuniversity.ac</u> mmended mar Buyya, Amir ier,2016. andrasekaran," Es Kapoor, "Hands boks Soldatos, "Buildir	to learn usin erts of SGT l. .in/course- · Vahid Dastje ssentials of Cl on Artificial i	g the SC Universi rdi," Inte oud comp ntelligen	TE-Learn ty. rnet of Thir outing", 2nd ce for IoT", ytics", Rive	ing portal ags: Princip l Edition, C 1 st Edition r Publisher	ples and Chapma on, Pacl	d Paradigm an and Hali at Publishi	ns", I/CRC, 2 ng, 2019	015.
The students will lectures delivered The link to the E https://elearning category/ 13. Books Reco Text Books 1. Rajku Elsev 2. R. Ch 3. Amita 14. Reference E 1. John	l be encouraged d by subject exp c-Learning porta sgtuniversity.ac mmended mar Buyya, Amir ier,2016. andrasekaran," Es Kapoor, "Hands ooks	to learn usin erts of SGT l. .in/course- · Vahid Dastje ssentials of Cl on Artificial i	g the SC Universi rdi," Inte oud comp ntelligen	TE-Learn ty. rnet of Thir outing", 2nd ce for IoT", ytics", Rive	ing portal ags: Princip l Edition, C 1 st Edition r Publisher	ples and Chapma on, Pacl	d Paradigm an and Hali at Publishi	ns", I/CRC, 2 ng, 2019	015.
The students will lectures delivered The link to the E https://elearning category/ 13. Books Reco Text Books 1. Rajku Elsev 2. R. Ch 3. Amita 14. Reference E 1. John	Î be encouraged d by subject exp 2-Learning porta <u>sgtuniversity.ac</u> mmended mar Buyya, Amir ier,2016. andrasekaran," Es Kapoor, "Hands boks Soldatos, "Buildir	to learn usin erts of SGT l. .in/course- · Vahid Dastje ssentials of Cl on Artificial i	g the SC Universi rdi," Inte oud comp ntelligen	TE-Learn ty. rnet of Thir outing", 2nd ce for IoT", ytics", Rive	ing portal ags: Princip l Edition, C 1 st Edition r Publisher	ples and Chapma on, Pacl	d Paradigm an and Hali at Publishi	ns", I/CRC, 2 ng, 2019	015.
The students will lectures delivered The link to the E https://elearning category/ 13. Books Reco Text Books 1. Rajku Elsev 2. R. Ch 3. Amita 14. Reference E 1. John	Î be encouraged d by subject exp 2-Learning porta <u>sgtuniversity.ac</u> mmended mar Buyya, Amir ier,2016. andrasekaran," Es Kapoor, "Hands boks Soldatos, "Buildir	to learn usin erts of SGT l. .in/course- · Vahid Dastje ssentials of Cl on Artificial i	g the SC Universi rdi," Inte oud comp ntelligen	TE-Learn ty. rnet of Thir outing", 2nd ce for IoT", ytics", Rive	ing portal ags: Princip l Edition, C 1 st Edition r Publisher	ples and Chapma on, Pacl	d Paradigm an and Hali at Publishi	ns", I/CRC, 2 ng, 2019	015.

Python for Data Science Lab

5. Pre-requisite 6. Frequency Even Odd Either Ev	2. Course Name	Python for Data Science Lab	• Science & Engineeri L		Г]	P
5. Pre-requisite (if any) 6. Frequency (use tick marks) Even (v) Odd (v) Either Sem (v) Even Sem (v) Odd (v) Either Sem (v) Even Sem (v) Odd Sem (v) Either Sem (v) Even Sem (v) Odd (v) Either Sem (v) Even Sem (v) Even Sem (v) Even (v) Even Sem (v) Even Sem (v) Even Sem (v) Even Sem (v) Even (v) <	3. Course Code		0		0		2
(if any) (use tick marks) (v) 0 Sem () Se 7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester) Lectures = 0 Tutorials = 0 Practical = 24 8. Course Description 9 Learning objectives: Process of data science: - 1 Python and Jupiter notebooks 2 2. An applied understanding of how to manipulate and analyze uncrated datasets 3 Basic statistical analysis and machine learning methods 4. How to effectively visualize results 10 Course Outcomes (COs): 1 1. Apply data visualization in Data sets 2 1 Apply data pre-processing techniques 3. Apply data pre-processing techniques 4 4 Apply data pre-processing techniques 1. Merging two Data Frames 3 Descriptive Statistics in Python 1 1. Merging two Data Frames 3 Descriptive Statistics in Python 4 2. Applying functions to Data Frames 3 Descriptive Statistics in Python 4 Creating and manipulating a List and an Array 5 Creating and trains like Operations on a Data Frame 6 Read	4. Type of Cours	e (use tick mark)	Core (√)	Pl	E()	OI	E ()
7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester) Lectures = 0 Tutorials = 0 Practical = 24 8. Course Description 9. Learning objectives: Process of data science: - 1. Python and Jupiter notebooks 2. An applied understanding of how to manipulate and analyze uncrated datasets 3. Basic statistical analysis and machine learning methods 4. 4. How to effectively visualize results 10. 10. Course Outcomes (COs): 1. 1. Apply data visualization in Data sets 2. 2. Utilize EDA, inference and regression techniques 3. 3. Apply data pre-processing techniques 4. 4. Apply Basic Machine Learning Algorithms 11. 1. Merging two Data Frames 2. 2. Applying functions to Data Frames 3. 3. Apply data pre-processing techniques 4. 4. Applying functions to Data Frames 3. 2. Applying functions to Data Frames 3. 3. Descriptive Statistics in Python 4. 4. Creating and manipulating a List and an Array 5. 5. Creating and and Matrix-like Operations on a Data Frame 6. 6. Reading and writing di	1						Every Sem ()
Lectures = 0 Tutorials = 0 Practical = 24 8. Course Description 9. 9. Learning objectives: 9. Process of data science: - 1. Python and Jupiter notebooks 2. An applied understanding of how to manipulate and analyze uncrated datasets 3. Basic statistical analysis and machine learning methods 4. How to effectively visualize results 10. Course Outcomes (COS): 1. Apply data visualization in Data sets 2. Utilize EDA, inference and regression techniques 3. Apply data pre-processing techniques 4. Apply data pre-processing techniques 1. List of Experiments 1. List of Experiments 1. Merging two Data Frames 2. Applying functions to Data Frames 3. Descriptive Statistics in Python 4. Creating and manipulating a List and an Array 5. Creating and manipulating a List of data sets 7. Data Visualizations 8. Correlation and Covariance 9. Regression Model 10. Simulate M	7 T-4-1 Normh	et et esteres Testes	:- h. D 4: 1 (
 8. Course Description 9. Learning objectives: Process of data science: - Python and Jupiter notebooks An applied understanding of how to manipulate and analyze uncrated datasets Basic statistical analysis and machine learning methods How to effectively visualize results 10. Course Outcomes (COs): Apply data visualization in Data sets Utilize EDA, inference and regression techniques Apply data pre-processing techniques Apply data pre-processing techniques Apply Basic Machine Learning Algorithms 11. List of Experiments Merging two Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/ 		of Lectures, Tutor				ie semeste	er)
 9. Learning objectives: Process of data science: - Python and Jupiter notebooks An applied understanding of how to manipulate and analyze uncrated datasets Basic statistical analysis and machine learning methods How to effectively visualize results 10. Course Outcomes (COs): Apply data visualization in Data sets Utilize EDA, inference and regression techniques Apply data pre-processing techniques Apply data pre-processing techniques Apply data pre-processing techniques Apply asic Machine Learning Algorithms 11. List of Experiments Merging two Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating and manipulating a List and an Array Creating and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iith.vlabs.ac.in/ 	Lectures $= 0$		Tutorials = 0	Practic	al = 24		
 9. Learning objectives: Process of data science: - Python and Jupiter notebooks An applied understanding of how to manipulate and analyze uncrated datasets Basic statistical analysis and machine learning methods How to effectively visualize results 10. Course Outcomes (COs): Apply data visualization in Data sets Utilize EDA, inference and regression techniques Apply data pre-processing techniques Apply data pre-processing techniques Apply data pre-processing techniques Apply asic Machine Learning Algorithms 11. List of Experiments Merging two Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating and manipulating a List and an Array Creating and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iith.vlabs.ac.in/ 	8 Course Descri	ntion					
Process of data science: - 1. Python and Jupiter notebooks 2. An applied understanding of how to manipulate and analyze uncrated datasets 3. Basic statistical analysis and machine learning methods 4. How to effectively visualize results 10. Course Outcomes (COs): 1. Apply data visualization in Data sets 2. Utilize EDA, inference and regression techniques 3. Apply data pre-processing techniques 4. Apply Basic Machine Learning Algorithms 11. List of Experiments 1. Merging two Data Frames 2. Applying functions to Data Frames 3. Descriptive Statistics in Python 4. Creating and manipulating a List and an Array 5. Creating and Matrix-like Operations on a Data Frame 6. Reading and writing different types of data sets 7. Data Visualizations 8. Correlation and Covariance 9. Regression Model 10. Simulate Machine Learning Algorithms,		•					
 Python and Jupiter notebooks An applied understanding of how to manipulate and analyze uncrated datasets Basic statistical analysis and machine learning methods How to effectively visualize results 10. Course Outcomes (COs): Apply data visualization in Data sets Utilize EDA, inference and regression techniques Apply data pre-processing techniques Apply Basic Machine Learning Algorithms 11. List of Experiments Merging two Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating and Matrix-like Operations on a Data Frame Reading and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/	g-~j						
 2. An applied understanding of how to manipulate and analyze uncrated datasets 3. Basic statistical analysis and machine learning methods 4. How to effectively visualize results 10. Course Outcomes (COs): Apply data visualization in Data sets Utilize EDA, inference and regression techniques Apply data pre-processing techniques Apply data pre-processing techniques Apply Basic Machine Learning Algorithms 11. List of Experiments Merging two Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating and manipulating allist and an Array Creating and manipulating allist and an Array Creating and Matrix-like Operations on a Data Frame Reading and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/ 	Process of data science:	: -					
 2. An applied understanding of how to manipulate and analyze uncrated datasets 3. Basic statistical analysis and machine learning methods 4. How to effectively visualize results 10. Course Outcomes (COs): Apply data visualization in Data sets Utilize EDA, inference and regression techniques Apply data pre-processing techniques Apply data pre-processing techniques Apply Basic Machine Learning Algorithms 11. List of Experiments Merging two Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating and manipulating different types of data sets Data Visualizations Correlation and Covariance Regression Model 10. Simulate Machine Learning Algorithms. 							
 Basic statistical analysis and machine learning methods How to effectively visualize results I. Apply data visualization in Data sets Apply data visualization in Data sets Utilize EDA, inference and regression techniques Apply data pre-processing techniques Apply Basic Machine Learning Algorithms List of Experiments Merging two Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating and manipulating alist and an Array Creating and manipulating alist and an Array Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 	1. Python and Jupit	ter notebooks					
 4. How to effectively visualize results 1. Apply data visualization in Data sets Apply data visualization in Data sets Utilize EDA, inference and regression techniques Apply data pre-processing techniques Apply Basic Machine Learning Algorithms 11. List of Experiments Merging two Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating a Data Frame and Matrix-like Operations on a Data Frame Reading and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component ttps://nlp-iiith.vlabs.ac.in/ 	2. An applied under	rstanding of how to n	nanipulate and analyze ur	ncrated data	sets		
 10. Course Outcomes (COs): Apply data visualization in Data sets Utilize EDA, inference and regression techniques Apply data pre-processing techniques Apply Basic Machine Learning Algorithms 11. List of Experiments Merging two Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating and manipulating a List and an Array Creating and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/ 	3. Basic statistical	analysis and machine	learning methods				
 10. Course Outcomes (COs): Apply data visualization in Data sets Utilize EDA, inference and regression techniques Apply data pre-processing techniques Apply Basic Machine Learning Algorithms 11. List of Experiments Merging two Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating and manipulating a List and an Array Creating and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/ 	4. How to effective	ely visualize results					
1. Apply data visualization in Data sets 2. Utilize EDA, inference and regression techniques 3. Apply data pre-processing techniques 4. Apply Basic Machine Learning Algorithms 11. List of Experiments 1. Merging two Data Frames 2. Applying functions to Data Frames 3. Descriptive Statistics in Python 4. Creating and manipulating a List and an Array 5. Creating a Data Frame and Matrix-like Operations on a Data Frame 6. Reading and writing different types of data sets 7. Data Visualizations 8. Correlation and Covariance 9. Regression Model 10. Simulate Machine Learning Algorithms.		-					
2. Utilize EDA, inference and regression techniques 3. Apply data pre-processing techniques 4. Apply Basic Machine Learning Algorithms 11. List of Experiments 1. Merging two Data Frames 2. Applying functions to Data Frames 3. Descriptive Statistics in Python 4. Creating a Data Frame and Matrix-like Operations on a Data Frame 6. Reading and writing different types of data sets 7. Data Visualizations 8. Correlation and Covariance 9. Regression Model 10. Simulate Machine Learning Algorithms.	10. Course Outcomes	(COs):					
 Apply data pre-processing techniques Apply Basic Machine Learning Algorithms List of Experiments Merging two Data Frames Applying functions to Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating and maripulating a List and an Array Creating and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/	1. Apply data v	visualization in Data s	ets				
 4. Apply Basic Machine Learning Algorithms 11. List of Experiments Merging two Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating a Data Frame and Matrix-like Operations on a Data Frame Reading and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/ 	2. Utilize EDA	, inference and regres	sion techniques				
 4. Apply Basic Machine Learning Algorithms 11. List of Experiments Merging two Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating a Data Frame and Matrix-like Operations on a Data Frame Reading and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/ 	3. Apply data r	pre-processing technic	mes				
 11. List of Experiments Merging two Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating a Data Frame and Matrix-like Operations on a Data Frame Reading and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/ 	11 0 1						
 Merging two Data Frames Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating a Data Frame and Matrix-like Operations on a Data Frame Reading and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component		ç					
 Applying functions to Data Frames Descriptive Statistics in Python Creating and manipulating a List and an Array Creating a Data Frame and Matrix-like Operations on a Data Frame Reading and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/							
 Descriptive Statistics in Python Creating and manipulating a List and an Array Creating a Data Frame and Matrix-like Operations on a Data Frame Reading and writing different types of data sets Data Visualizations Correlation and Covariance Regression Model Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/	<u> </u>						
 4. Creating and manipulating a List and an Array 5. Creating a Data Frame and Matrix-like Operations on a Data Frame 6. Reading and writing different types of data sets 7. Data Visualizations 8. Correlation and Covariance 9. Regression Model 10. Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/							
 5. Creating a Data Frame and Matrix-like Operations on a Data Frame 6. Reading and writing different types of data sets 7. Data Visualizations 8. Correlation and Covariance 9. Regression Model 10. Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/			an Array				
 6. Reading and writing different types of data sets 7. Data Visualizations 8. Correlation and Covariance 9. Regression Model 10. Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/				rame			
 7. Data Visualizations 8. Correlation and Covariance 9. Regression Model 10. Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/				lunic			
 8. Correlation and Covariance 9. Regression Model 10. Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/	, in the second s	e i					
 9. Regression Model 10. Simulate Machine Learning Algorithms. 12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/							
12. Brief Description of self-learning / E-learning component https://nlp-iiith.vlabs.ac.in/	9. Regression Mod	el					
https://nlp-iiith.vlabs.ac.in/	10. Simulate Machir	ne Learning Algorithn	ns.				
https://nlp-iiith.vlabs.ac.in/							
	L	0	/ E-learning compon	ent			
http://ulah.co.in/participating institute jijt hyderahad	https://nlp-iiith.vlabs.a	<u>c.in/</u>					
auto.//viad.co.m/datucidating-institute-int-ivueradad	http://ylab.co.in/partici	pating-institute-iiit-	hyderabad				

Medical Image Processing

2. Course Name	Medical Image	L	Т	Τ		
	Processing					
3. Course Code		3	0		4	
4. Type of Course (us	se tick mark)	Core (✓)	PE()		OE ()	
5. Pre-requisite (if any)	Basic Python	6. Frequency (use tick marks)	Even ()	Odd (✓)	Either Sem()	Every Sem ()
7. Total Number of L	ectures, Tutorials,	Practical (assuming 1	2 weeks o	of one ser	mester)	
Lectures = 36		Tutorials = 0	Practic	cal = 0		
8. Course Description	n					
-		ing, interpreting and vis a variety of medical im	0		ion from t	WO-
9. Learning Objecti	ves:					
1. To define the princ	ciples of image sample	ing, quantization, enhance	ement and f	filtering to	echniques	
		ssion methods and morphe	ological ba	sed proce	sses and m	achine
	es for image segmentation					
-		ration and visualization fo				
4. To acquire the stud	dent with the techniqu	es of shape analysis and i	mage class	ification	using neura	al
networks for brain	computer interface an	nd computer aided diagno	sis			
10. Course Outcomes						
The students will b	be able to: -					
1. Comprehend imag	ge sampling and DFT					
2. Process the given	medical images to end	hance them				
3. Apply compression	on techniques and mor	phological operations for	segmentat	ion		
		n the given image for segn				
5. Register images of	f different modalities,	render their volumes for	visualizatio	on		
6. Use neural networ	rks for image classific	ation				
7. Design and develo	op algorithms to proce	ess and visualize images fi	om differe	ent modali	ities	
		alize images from differen	nt modalitie	es for diag	gnostic app	olication
11. Unit wise detailed	l content	-				
	Number of	Image Fundamentals				
Unit-1	lectures = 9					
	lectures = 9	ling and quantization - 2D	DFT and	DCT.		
Image perception- Image	lectures = 9 e model- Image samp				operations	- Image
Image perception- Image Image Enhancement an	lectures = 9 e model- Image samp d Filtering: Image e	ling and quantization - 2D	modelling,	, Spatial	•	- Image
Image Enhancement an	lectures = 9 e model- Image sampled filtering: Image e ls, Image degradation Number of	ling and quantization - 2D nhancement- Histogram	modelling. Maximum (, Spatial entropy re	estoration.	- Image
Image perception- Image Image Enhancement an restoration, Noise model Unit – 2	lectures = 9 e model- Image samp ad Filtering: Image e ls, Image degradation Number of lectures = 9	ling and quantization - 2D nhancement- Histogram model, Wiener filtering, I Image Compression and	modelling, Maximum (Morpholog	, Spatial entropy re gical Proc	essing	
Image perception- Image Image Enhancement an restoration, Noise model Unit – 2 Image compression - Lo	lectures = 9e model- Image sampledad Filtering: Image ead Filtering: Image degradationNumber oflectures = 9cossy and lossless Composition	ling and quantization - 2D nhancement- Histogram model, Wiener filtering, I Image Compression and npression, Predictive tech	modelling, Maximum (Morpholog niques - D	, Spatial entropy re gical Proc	essing	
Image perception- Image Image Enhancement an restoration, Noise model Unit – 2 Image compression - Lo Skeleton operations, Top	lectures = 9e model- Image samplead Filtering: Image ead Filtering: Image degradationNumber oflectures = 9ossy and lossless Comp-hat algorithm - Mor	ling and quantization - 2D nhancement- Histogram model, Wiener filtering, I Image Compression and npression, Predictive tech phology based segmentati	modelling, Maximum o Morpholog niques - D on	, Spatial entropy re gical Proc Dilation, E	essing Crosion, Op	en, Clos
Image perception- Image Image Enhancement an restoration, Noise model Unit – 2 Image compression - Lo Skeleton operations, Top Image Segmentation :	lectures = 9 e model- Image sample ad Filtering: Image e ls, Image degradation Number of lectures = 9 possy and lossless Component algorithm - Morgon Machine Learning b	ling and quantization - 2D nhancement- Histogram model, Wiener filtering, I Image Compression and npression, Predictive tech	modelling, Maximum Morpholog niques - D on ithms - S	, Spatial entropy re gical Proc Dilation, E ingular V	estoration. essing Crosion, Op Value Decc	pen, Clos

Unit – 3	Number of lectures = 9	Image Registration and Visualization
Image Registration		on, SPECT/CT, MR/CT, PET/CT - Image visualization - Volume
v v	e rendering and Maximum	Č
Shape Analysis	and Image Classification	: Topological attributes - Shape orientation descriptors, Fourier
descriptors, - K	means clustering, maching	ine learning, Neural Network approaches- Statistical Parametric
	ng - Regression analysis.	
Unit – 4	Number of	CAD and Brain Computer Interface
	lectures = 9	
Applications of C	Computer Aided Design (CAD) - General Linear Model (GLM) and its application in
functional brain	mapping - Group analys	is using t-test - Computer Aided Manufacturing (CAM) in
Medical Imaging	applications, Patient spe	ecific modelling - Brain Computer Interface (BCI) and its
applications in Ne	euroscience.	
12. Brief Descri	ption of self-learning /	E-learning component
The students will	l be encouraged to learn	using the SGT E-Learning portal and choose the relevant
lectures delivere	d by subject experts of S	SGT University.
	E-Learning portal.	
https://elearning	.sgtuniversity.ac.in/cour	<u>se-</u>
category/		
13. Books Reco	mmended	
Text Books		
1. Reiner Salzer	, "Biomedical Imaging: Pr	inciples and Applications", 2012, 1st Edition, Wiley, New Jersey
Reference Books		
1. Jonathan Wo	lpaw, Elizabeth Winter, (E	Eds.) "Brain-Computer Interfaces: Principles and Practice", 2012, 1st
Edition, Oxfo	ord University Press, Oxfor	rd.
2. Pears Nick	iu Yonghuai Bunting P	eter (Eds.) "3D Imaging Analysis and Applications" 2012 2nd

2. Pears, Nick, Liu, Yonghuai, Bunting, Peter (Eds.) "3D Imaging, Analysis and Applications", 2012, 2nd Edition, Springer, Berlin

Advanced DBMS

1. Name of the Department- Computer Science & Engineering								
2. Course	Adv	vanced Database	L	Т	-	Р		
Name	Ma	nagement						
	Sys	tem						
			2	0				
3. Course Code			3	C)	0		
4. Type of Cours	se (us	se tick mark)	Core $()$	PE() (OE ()		
5. Prerequisite (i	if	DBMS	6. Frequency (use	Even	Odd	Either	Every	
any)			tick marks)	0	()	Sem ()	Sem ()	
	of Le	ectures, Tutorials, P	ractical (assuming 12we			er)		
Lectures $= 36$	Lectures = 36 Tutorials = 0 Practical = 0							
8. Course Descri	ptio	n						
This module aims	to giv	ve students in depth	information about syste	em implen	nentation	techniqu	es, data	
storage, representi	ng da	ta elements, databa	se system architecture, t	he system	n catalog,	query		
processing and opt	imiza	ation, transaction p	cocessing concepts, conc	urrency c	ontrol			
techniques, databa	se ree	covery techniques.	• •					
		• •						
9. Learning obje								
	and t	he basic concepts a	and terminology related	to DBMS	S and Re	lational D	Database	
Design								
2. To the desi	gn ar	nd implement Distri	buted Databases.					
3. To underst	and	advanced DBMS t	echniques to construct	tables and	d write e	effective	queries,	
forms, and	repo	rts						
10. Course Outco	mes	(COs):						
1. Exposure	for s	tudents to write c	omplex queries includi	ng full o	outer joir	ns, self-jo	oin, sub	
queries, and	d set	theoretic queries.						
2. Know-how	of of	the file organizati	ion, Query Optimizatio	on, Trans	action n	nanageme	nt, and	
database ad	lmini	stration techniques						
11. Unit wise detai	iled c	content						
Unit-1		Number of						
		lectures = 9						
Formal review of r	elatio	onal database and F	Ds Implication, Closure	its corre	ctness			
				,				
	Dec	omposition and sy	nthesis approaches,Bas	ics of qu	lery pro	cessing,	external	
sorting, file scans								
Unit – 2		Number of						
		lectures = 9						
Drogossing of	ina	motoniclined	ningling d	an and t	onefa	tion 1		
î			pipelined processing,			ulon rul	es, DB	
transactions, ACIL	pro	perties, interleaved	executions, schedules, se	erializabil	lity			

	T	
Unit – 3	Number of	
	lectures = 9	
Correctness of interlea	aved execution, Loc	cking and management of locks, 2PL, deadlocks, multiple
level granularity, CC o	on B+ trees, Optimis	tic CC
Unit – 4	Number of	
	lectures = 9	
Time stamped, lock	based techniques,	Multiversion approaches, Comparison of CC methods,
dynamic databases, Fa	ilure classification,	recovery algorithm, XML and relational databases
12. Brief Description	of self-learning / E	-learning component
		sing the SGT E-Learning portal and choose the relevant
lectures delivered by s	ubject experts of SC	T University.
The link to the E-Lear	ning portal.	
https://elearning.sgtun	iversity.ac.in/course	-category/
13. Books Recommen	ided	
Text Books		
1. A. Silberschatz	, H. Korth, S. Sudar	shan, Database system concepts, 5/e, McGraw Hill, 2008
Reference Books		
1. K. V. Iyer, Lec	ture notes available	as PDF file for classroom use.

ADBMS Lab

	Course Name	ADBMS Lab	L	Т	I	P	
3.	Course Code		0	0		2	
4.	Type of Course mark)	e (use tick	Core (√)	PE	0	OE	0
5.	Pre-requisite (if any)		6. Frequency (use tick marks)	Even ()	Odd $()$	Either Sem ()	Every Sem ()
7.	Total Number	of Lectures, Tut	orials, Practical (ass	uming 12 w	eeks of on	e semester)	
Le	ctures = 0		Tutorials = 0	P	ractical =	24	
9.	2. To understa	he features of a I nd the internals o	Database Management f a database system. ral interfaces to SQL o	•	vely.		
	-		se using SQL DML/D y constraints on a data			ne-art DBMS	
11	. List of Experin	nents					
	 C A D 2. Implementa 	reate table lter table prop table	mands of SQL with sumands of SQL with s				
	• U	pdate					
	 U D 3. Implementa Nu Ag Ch Co Da 	pdate belete tion of different t unber function gregate Function aracter Function nversion Functio te Function			nples		

- Special Operator
- Set Operation
- 5. Implementation of different types of Joins
 - Inner Join
 - Outer Join
 - Natural Join etc.
- 6. Study and Implementation of
 - Group By & having clause
 - Order by clause
 - Indexing
- 7. Study & Implementation of
 - Sub queries
 - Views
- 8. Study & Implementation of different types of constraints.
- 9. Study & Implementation of Database Backup & Recovery commands.
- 10. Study & Implementation of Rollback, Commit, Save point.
 - Creating Database /Table Space
 - Managing Users: Create User, Delete User
 - Managing roles:-Grant, Revoke.
- 11. Study & Implementation of PL/SQL.
- **12.** Study & Implementation of SQL Triggers.

12. Brief Description of self-learning / E-learning component

https://www.nitt.edu/home/academics/departments/cse/programmes/mtech/curriculum/semester_2 /advanced_dbms_laboratory/

Medical Image Processing Lab

1. Name of the De	epartment- Compu	uter Science & Enginee	ring	
2. Course Name	Medical Image Processing Lab	L	Т	Р
3. Course Code		0	0	2
4. Type of Commark)	urse (use tick	Core (√)	PE()	OE ()
5. Pre- requisite (if any)		6. Frequency (use tick marks)	Even Odd () $()$	Either Every Sem Sem () ()
7.Total NumbLectures = 0	per of Lectures, Tu	utorials, Practical (assu Tutorials = 0	ming 12 weeks o Practical = 24	f one semester)
 To discover the machine learni To develop the To acquire the networks for b To acquire the networks for b Course Out The studen Comprehend im Process the give Apply compress Predict a machin Register images Use neural netw Design and deve Develop algorithm 	etives: principles of image e different image co- ng techniques for in e methods of image student with the tec- rain computer inter tromes (COs): ts will be able to: - age sampling and I en medical images t sion techniques and he learning algorith of different modal procks for image class elop algorithms to p ms to process and v	o enhance them morphological operation m on the given image fo ities, render their volume	morphological ba ation for medical sis and image class diagnosis ns for segmentation r segmentation es for visualization ages from differen	applications sification using neural
 Design suitabl Using region g MR brain imag Extract the feat 	Tilters enhance the generation of the generation of the second se	given noisy image. Comp by domain for noise remo segment the gray matter, om the given CT abdome ge and register them	oval from the give white matter and	n image CSF from the given

Semester 2nd

Advance Software Engineering & Testing

1. Name of the	ne Department- Comp	uter Science & Engine	ering	
2. Course	Advanced Software	L	Т	Р
Name	Engineering & Testing	g		
~ ~				
3. Course		3	0	0
Code4.Type of Co	ourse (use tick mark)	Core $()$	DE()	OE ()
4. Type of Co	burse (use lick mark)	Core (V)	PE ()	OE ()
5. Pre-requis	ite Computer	6. Frequenc	Even Odd ()	Either Every
(if any)	Fundamental	y (use tick	(1)	Sem () Sem ()
		marks)		
	iber of Lectures, Tutor	rials, Practical (assumi		e semester)
Lectures = 36		Tutorials = 0	Practical = 0	
8. Course De	scription			
		lop techniques of softwa	are-intensive system	ns through
		gn, testing, maintenance	•	U
-				1 0
		eir basic software engine		
-	iques for maintenance,	evolution, dependability	, renability, safety	, security, and
resilience.				
9. Learning object	tives:			
0.00	e Basics of Software Ar	chitecture		
		ftware Development Cy	cle	
		e team development pro		
	he fundamentals of soft	ware testing and its appl	ication through the	software life
cycle.	(22.2.)			
	itcomes (COs):	· · · · · · · · · · · · · · · · · · ·	1 6 1.66 4 4	1
1. Develop skills software life cy	in designing and execut	ing software tests suitab	le for different stag	ges in the
		software testing in syste	ms development d	enloyment and
maintenance.	a appreciate the fole of t	software testing in syste.	ins development, d	opio ymenic und
3. Develop a cont	tinuing interest in softwa	are testing, and obtain sa	tisfaction from its	study and
practice.				
		vare testers within softw	are projects, the pr	ofession and the
wider commun	5			
	detailed content			
Unit-1				
	lectures = 09			
Introduction: Pros	grams vs. software pro	ducts, emergence of so	oftware engineerin	g, software life
		ement: Project manage	U	0,
Project planning,	COCOMO Model A H	Heuristic estimation tec	hniques, staffing	evel estimation,
		nd management. Requir	ement Analysis a	nd specification:
Requirements engi	neering, partitioning So	ftware, prototyping		
Unit – 2	Number of			
\cup IIII – 2				
	lectures = 08			

Data Modeling, Functional Modeling and information flow: Data flow diagrams, data flow model, control flow model, the control and process specification, The data dictionary, Other classical analysis methods. System Design design principles, Functional independence, Cohesion, Coupling, Design documentation.

Unit – 3	Number of
	lectures = 09

Testing and maintenance: Software Testing Techniques, Software testing Fundamentals, Verification Testing: Verification Methods, SRS Verification, User Documentation Verification, Functional Testing: Boundary Value Analysis, Equivalence Class Testing, Structural Testing: Identification of Independent Paths: Control Flow Graph. Use Case Testing: Use Case Diagrams and Use Cases. Prioritization of test cases for Regression Testing: Regression Testing, Regression Test Case Selection, Prioritization guidelines.

Unit – 4	Number of
	lectures = 10

Testing Activities: Unit Testing, Levels of Testing, Integration Testing, System Testing, Metrics and Models in Software Testing: What are Software Metrics, categories of Metrics, object Oriented Metrics used in testing, What should we measure during testing? Prediction Model: Reliability Modes, Fault Prediction Model.

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

The link to the E-Learning portal.

https://elearning.sgtuniversity.ac.in/course-category/

13. Books Recommended

Text Books

- 1. Software Engineering A Practitioner"s Approach, Roger S. Pressman, MGH Publications, New Delhi, Eighth edition, 2019.
- 2. Effective Methods for Software Testing, William Perry, John Wiley & Sons, New York, Van Nostrand Reinhold, New York, 2nd Ed., 2006.

Reference Books

- 1. An Integrated Approach to Software Engineering by Pankaj Jalote, Narosa Publications, New Delhi, 2010.
- 2. Fundamentals of Software Engineering, Rajib Mall, PHI Learning; Fifth edition, 2019.
- 3. Software Testing ACraftsman"s approach, Paul C. Jorgenson, CRC Press.
- 4. Testing Computer Software, CemKaner, Jack Falk, Nguyen Quoc, Van Nostrand Reinhold, New York, 2nd Ed.

Advanced Software Engineering & Testing Lab

 Course Code Type of Course (use tick mark) Pre-requisite (if any) Total Number of Lectures, Tutorials, Lectures = 0 Course Description Learning objectives: Analyze the requirements for the gi Design and implement various solu Course Outcomes (COs): Create appropriate document for the Construct control flow graphs for the Construct control flow graphs for the Write down the problem statement for a Do requirement analysis and develop S suggested system. To perform the function oriented diagra To perform the user's view analysis for To perform various testing using the test of the suggested system. Take any system (e.g. ATM system) an bugs. Write the test cases for any known apple Create a test plan document for any app Study of any testing tool (e.g. Sele Study of any test management tool (e.g. Bug) Study of any test management tool (e.g. Bug)	(u ma	requency se tick arks) ssuming 1		Odd ()	2 OE () Either Sem ()	
 5. Pre-requisite (if any) 7. Total Number of Lectures, Tutorials, Lectures = 0 8. Course Description 9. Learning objectives: Analyze the requirements for the gi Design and implement various solu 10. Course Outcomes (COs): Create appropriate document for the 2. Construct control flow graphs for the flit. List of Experiments 11. Urite down the problem statement for a 2. Do requirement analysis and develop S suggested system. 33. To perform the function oriented diagra To perform the user's view analysis for 5. To draw the structural view diagram for 6. To perform various testing using the test of the suggested system. 7. Take any system (e.g. ATM system) an bugs. 8. Write the test cases for any known apple. Create a test plan document for any app 10. Study of any testing tool (e.g. Winrunne 11. Study of any web testing tool (e.g. But 13. Study of any test management tool (e.g. But 13. Study of any test management tool (e.g. But 13. Study of any test management tool (e.g. But 13. Study of any test management tool (e.g. But 13. Study of any test management tool (e.g. But 13. Study of any test management tool (e.g. But 13. Study of any test management tool (e.g. But 13. Study of any test management tool (e.g. But 13. Study of any test management tool (e.g. But 13. Study of any test management tool (e.g. But 14. Study of any test management tool (e.g. But 15. Study of any test management tool (e.g. But 15. Study of any test management tool (e.g. But 15. Study of any test management tool (e.g. But 15. Study of any test management tool (e.g. But 15. Study of any test management tool (e.g. But 15. Study of any test management tool (e.g. But 15. Study of any test management tool (e.g. But 15. Study of any test management tool (e.g. But 1	6. Fr (u ma Practical (a	requency se tick arks) ssuming 1	Even () 2 weeks		Either	
 any) 7. Total Number of Lectures, Tutorials, Lectures = 0 8. Course Description 9. Learning objectives: Analyze the requirements for the gi Design and implement various solution 10. Course Outcomes (COs): Create appropriate document for the gi Construct control flow graphs for the function oriented diagration of the function oriented diagration of the suggested system. 11. Write down the problem statement for a suggested system. 13. To perform the function oriented diagration of the suggested system. 14. To perform the statement for the suggested system. 15. To draw the structural view diagram for the suggested system. 16. To perform various testing using the test of the suggested system. 17. Take any system (e.g. ATM system) and bugs. 18. Write the test cases for any known appling. Study of any testing tool (e.g. Winrunnei 11. Study of any web testing tool (e.g. Bugust 12. Study of any test management tool (e.g. Bugust 13. Study of any test management tool (e.g. Bugust 13. Study of any test management tool (e.g. Bugust 13. Study of any test management tool (e.g. Bugust 13. Study of any test management tool (e.g. Bugust 13. Study of any test management tool (e.g. Bugust 13. Study of any test management tool (e.g. Bugust 13. Study of any test management tool (e.g. Bugust 13. Study of any test management tool (e.g. Bugust 13. Study of any test management tool (e.g. Bugust 13. Study of any test management tool (e.g. Bugust 13. Study of any test management tool (e.g. Bugust 13. Study of any test management tool (e.g. Bugust 14. Study of any test management tool (e.g. Bugust 14. Study of any test management tool (e.g. Bugust 14. Study of any test management tool (e.g. Bugust 14. Study of any test management tool (e.g. Bugust 14. Study of any test management tool (e.g. Bugust 14. Study of any test management tool (e.g. Bugust 14. Study of any test mana	(u ma Practical (a	se tick arks) ssuming 1	() 2 weeks			
 Total Number of Lectures, Tutorials, Lectures = 0 Course Description Learning objectives: Analyze the requirements for the gi Design and implement various solu Course Outcomes (COs): Create appropriate document for the Construct control flow graphs for the Construct control flow graphs for the List of Experiments Write down the problem statement for a Do requirement analysis and develop S suggested system. To perform the function oriented diagra To perform the user's view analysis for To perform various testing using the test of the suggested system. Take any system (e.g. ATM system) an bugs. Write the test cases for any known apple Create a test plan document for any app Study of any testing tool (e.g. Winrunne) Study of any test management tool (e.g. Bug)	ma Practical (a	arks) ssuming 1	2 weeks	- 6	Sem ()	Every
 Lectures = 0 8. Course Description 9. Learning objectives: Analyze the requirements for the gi Design and implement various solu 10. Course Outcomes (COs): Create appropriate document for the Construct control flow graphs for the 11. List of Experiments Write down the problem statement for a Do requirement analysis and develop Se suggested system. 31. To perform the function oriented diagra To perform the user's view analysis for for the suggested system. To perform various testing using the test of the suggested system. 7. Take any system (e.g. ATM system) an bugs. 8. Write the test cases for any known apple. Create a test plan document for any app. 10. Study of any testing tool (e.g. Winrunne) 11. Study of any bug tracking tool (e.g. Bug) 				. f	~	Sem (
 8. Course Description 9. Learning objectives: Analyze the requirements for the gi Design and implement various solu 10. Course Outcomes (COs): Create appropriate document for the Construct control flow graphs for th 11. List of Experiments I. Write down the problem statement for a Do requirement analysis and develop S suggested system. To perform the function oriented diagra To perform the user's view analysis for To perform various testing using the test of the suggested system. To perform various testing using the test of the suggested system. Take any system (e.g. ATM system) an bugs. Write the test cases for any known appl P. Create a test plan document for any app Study of any web testing tool (e.g. Sele Study of any test management tool (e.g. Bug Study of any test management tool (e.g. Bug Study of any test management tool (e.g. Bug 	<u>Tutorials =</u>	0			mester)	
 9. Learning objectives: Analyze the requirements for the gi Design and implement various solu 10. Course Outcomes (COs): Create appropriate document for the Construct control flow graphs for the 11. List of Experiments Write down the problem statement for a Do requirement analysis and develop S suggested system. 3. To perform the function oriented diagra To perform the user's view analysis for To perform various testing using the tes of the suggested system. Take any system (e.g. ATM system) an bugs. Write the test cases for any known appl Create a test plan document for any app Study of any testing tool (e.g. Winrunne Study of any bug tracking tool (e.g. Bug) 			Practic	cal = 24		
 Analyze the requirements for the gi Design and implement various solu Course Outcomes (COs): Create appropriate document for the Construct control flow graphs for the Construct control flow graphs for the Construct control flow graphs for the List of Experiments Write down the problem statement for a Do requirement analysis and develop Se suggested system. To perform the function oriented diagra To perform the user's view analysis for To perform various testing using the test of the suggested system. Take any system (e.g. ATM system) and bugs. Write the test cases for any known apple Create a test plan document for any app Study of any testing tool (e.g. Winrunne Study of any bug tracking tool (e.g. Bug) 						
 2. Design and implement various solu 10. Course Outcomes (COs): Create appropriate document for the Construct control flow graphs for the 11. List of Experiments Write down the problem statement for a Do requirement analysis and develop So suggested system. To perform the function oriented diagra To perform the user's view analysis for To perform the user's view analysis for To perform various testing using the test of the suggested system. Take any system (e.g. ATM system) and bugs. Write the test cases for any known appl Create a test plan document for any app Study of any testing tool (e.g. Winrunne Study of any bug tracking tool (e.g. Bug Study of any test management tool (e.g. Bug 						
 Course Outcomes (COs): Create appropriate document for the 2. Construct control flow graphs for the 11. List of Experiments Write down the problem statement for a 2. Do requirement analysis and develop S suggested system. To perform the function oriented diagra To perform the user's view analysis for 5. To draw the structural view diagram for 6. To perform various testing using the test of the suggested system. Take any system (e.g. ATM system) an bugs. Write the test cases for any known appl 0. Create a test plan document for any app 10. Study of any testing tool (e.g. Winrunne 11. Study of any bug tracking tool (e.g. Bug 13. Study of any test management tool (e.g. Bug 13. Study of any test management tool (e.g. Bug 13. Study of any test management tool (e.g. Bug 13. Study of any test management tool (e.g. Bug 13. Study of any test management tool (e.g. Bug 13. Study of any test management tool (e.g. Bug 13. Study of any test management tool (e.g. Bug 13. Study of any test management tool (e.g. Bug 13. Study of any test management tool (e.g. Bug 14. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Bug 15. Study of any test management tool (e.g. Study 15. Study	en problem	statement.				
 Create appropriate document for the 2. Construct control flow graphs for the 11. List of Experiments Write down the problem statement for a 2. Do requirement analysis and develop S suggested system. To perform the function oriented diagra To perform the user's view analysis for 5. To draw the structural view diagram for 6. To perform various testing using the tes of the suggested system. Take any system (e.g. ATM system) an bugs. Write the test cases for any known appl Create a test plan document for any app Study of any testing tool (e.g. Winrunne Study of any bug tracking tool (e.g. Bug Study of any test management tool (e.g. 	tions for the	given prob	olem.			
 Construct control flow graphs for the control flow graphs for the final statement of the function of the suggested system. Write down the problem statement for a suggested system. To perform the function oriented diagra for for the suggested system. To perform the user's view analysis for for the suggested system. To perform various testing using the test of the suggested system. Take any system (e.g. ATM system) and bugs. Write the test cases for any known apple. Create a test plan document for any app for study of any testing tool (e.g. Winrunne for any app for the suggested system for the suggested system for the suggested system for any app for the study of any bug tracking tool (e.g. Bug for the suggested system for the study of any test management tool (e.g. Bug for the suggested system for any bug tracking tool (e.g. Bug for the suggested system for any bug tracking tool (e.g. Bug for the suggested system for the study of any test management tool (e.g. Bug for the suggested system for the suggested system for the suggested system for any bug tracking tool (e.g. Bug for the suggested system for any bug tracking tool (e.g. Bug for the suggested system for any bug tracking tool (e.g. Bug for the suggested system for any bug tracking tool (e.g. Bug for the suggested system for any bug tracking tool (e.g. Bug for the suggested system for the suggested syst						
 List of Experiments Write down the problem statement for a Do requirement analysis and develop S suggested system. To perform the function oriented diagra To perform the user's view analysis for To draw the structural view diagram for To perform various testing using the test of the suggested system. Take any system (e.g. ATM system) an bugs. Write the test cases for any known appl Create a test plan document for any app Study of any web testing tool (e.g. Winrunne Study of any bug tracking tool (e.g. Bug Study of any test management tool (e.g. 	software art	ifact.				
 List of Experiments Write down the problem statement for a Do requirement analysis and develop S suggested system. To perform the function oriented diagra To perform the user's view analysis for To draw the structural view diagram for To perform various testing using the test of the suggested system. Take any system (e.g. ATM system) an bugs. Write the test cases for any known appl Create a test plan document for any app Study of any web testing tool (e.g. Winrunne Study of any bug tracking tool (e.g. Bug Study of any test management tool (e.g. 	e solution th	at is imple	mented.			
 Write down the problem statement for a 2. Do requirement analysis and develop S suggested system. To perform the function oriented diagra To perform the user's view analysis for To draw the structural view diagram for To perform various testing using the tes of the suggested system. Take any system (e.g. ATM system) an bugs. Write the test cases for any known appl Create a test plan document for any app Study of any web testing tool (e.g. Winrunne Study of any bug tracking tool (e.g. Bug Study of any test management tool (e.g. 		1				
 9. Create a test plan document for any app 10. Study of any testing tool (e.g. Winrunne 11. Study of any web testing tool (e.g. Sele 12. Study of any bug tracking tool (e.g. Bug 13. Study of any test management tool (e.g. 	the suggeste the system:	d system: Class diag t testing, in	Use case ram, obje tegration	diagram. ect diagram testing fo and repor	m. or a samp	le code
 10. Study of any testing tool (e.g. Winrunne 11. Study of any web testing tool (e.g. Sele 12. Study of any bug tracking tool (e.g. Bug 13. Study of any test management tool (e.g. 						
 Study of any web testing tool (e.g. Sele Study of any bug tracking tool (e.g. Bug Study of any test management tool (e.g. 	cation(e.g. H				n)	
12. Study of any bug tracking tool (e.g. Bug13. Study of any test management tool (e.g.	cation(e.g. I lication (e.g.					
13. Study of any test management tool (e.g	cation(e.g. H lication (e.g.					
	cation(e.g. I lication (e.g. c) nium)	Library M				
14. Study of any open source-testing tool (e	cation(e.g. I lication (e.g. r) nium) gzilla, bugbit	Library M				
- ·· · · · · · · · · · · · · · · · · ·	cation(e.g. I lication (e.g. r) nium) gzilla, bugbit	Library M				
12. Brief Description of self-learning / E-	cation(e.g. H lication (e.g. r) nium) gzilla, bugbit Test Directo	Library M				

https://elearning.sgtuniversity.ac.in/course-category/

Software Project Management

1. Name of the Department- Computer Science & Engineering								
2. Course Name	Software	L	Т	Р				
	Project							
	Management							
3. Course Code		3	0	0				
4 Tune of Course (u		Care (1)	DEO					
4. Type of Course (u	se tick mark)	Core $()$	PE()	OE ()				
5. Pre-requisite (if	Programming	6. Frequency (use	Even Odd ()	Either Every				
any)	Language,	tick marks)	(√)	Sem () Sem ()				
	Software Engg.							
7 Total Number of l	actures Tutorials	Departical (accuming 1	2 weeks of one se	mastan				
7.1000000000000000000000000000000000000	Lectures, Tutorials	, Practical (assuming 1 Tutorials = 0	2 weeks of one se Practical = 0	mester)				
Lectures $= 50$		1 utorials = 0	r ractical = 0					
8. Course Descriptio	n							
This course covers the	concept of software	management and its dif	ferent phases.					
9. Learning objectiv				4 - 4 4				
•	1 0	ts and suggest an approp		t strategy.				
	1	nics in successful softwar	1					
•	• -	es of project management		f (1, . 1,				
		nanagement approach thi	ough an evaluatio	n of the business				
context and scope of	. .							
10. Course Outcomes		of Software Project man	agamant & will a	leo hava a good				
		t manager and how to ha	-	iso nave a good				
		and techniques used for		nt				
		ajority of the software pr						
	reduced effectively.	ajointy of the software pr	ojeeto lullo ulla lio	w that fulfule				
	•	Scheduling, tracking, R	isk analysis. Ouali	ty management				
	U U	rent techniques Project S	•					
5	0	estimation using differer	0	-8,,,,				
11. Unit wise detailed	v	6	1					
Unit-1	Number of	PROJECT CONCEP	TS AND ITS MA	NAGEMENT				
	lectures = 09							
		odel-Capability Maturit	, v	č ,				
tracking-Project closu	re. Evolution of	Software Economics -	- Software Mana	agement Process				
Framework: Phases,	Artifacts, Workflo	ws, Checkpoints – So	oftware Managen	nent Disciplines:				
Planning / Project Org	anization and Respo	onsibilities / Automation	/ Project Control -	- Modern Project				
Profiles								
Unit – 2	Number of	COST ESTIMATION	I					
	lectures = 09		-					
	······································							
Problems in Software	Estimation – Algo	orithmic Cost Estimation	n Process, Function	on Points, SLIM				
(Software Life cycle	Management), CO	COMO II (Constructive	e Cost Model) -	Estimating Web				
/ /		~		<u> </u>				

Application Development - Concepts of	f Finance,	Activity	Based	Costing	and	Economic	Value
Added (EVA) – Balanced Score Card.							

Unit – 3	Number of	SOFTWARE QUALITY MANAGEMENT			
	lectures = 09				

Software Quality Factors – Software Quality Components – Software Quality Plan – Software Quality Metrics – Software Quality Costs – Software Quality Assurance Standard – Certification – Assessment.

Software Configuration Management – Risk Management: Risk Assessment: Identification / Analysis / Prioritization. Risk Control: Planning / Resolution / Monitoring.

Software Metrics – Classification of Software Metrics: Product Metrics: Size Metrics, Complexity Metrics, Halstead's Product Metrics, Quality Metrics, and Process metrics

Unit – 4	Number of	PROJECT EVALUATION AND EMERGING			
	lectures = 09	TRENDS			

Strategic Assessment–Technical Assessment–Cost Benefit Analysis–Cash Flow Forecasting–Cost Benefit Evaluation Technique–Risk Evaluation–Software Effort Estimation. Emerging Trends: Import of the internet on project Management – people Focused Process Models.

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

The link to the E-Learning portal.

https://elearning.sgtuniversity.ac.in/course-category/

13. Books Recommended

Text Books

- 1. Bob hughes and Mike Cotterell, "Software Project Management" second edition, 1999.
- 2. Royce, W. "Software Project Management: A Unified Framework", AddisonWesley, 1998.

Reference Books

- 1. Ramesh Gopalaswamy, "Managing and global Software Projects", Tata McGraw Hill Tenth Reprint, 2011.
- 2. Fenton, N.E., and Pfleeger, S.L.. "Software Metrics: A Rigorous and Practical Approach, Revised" Brooks Cole, 1998.
 - **3.** Kaplan, R.S., Norton, D.P. "The Balanced Scorecard: Translating Strategy into Action", Harvard Business School Press, 1996.
 - **4.** Boehm, B. W. "Software Risk Management: Principles and Practices" in IEEE Software, January 1991, pp32-41.
 - 5. Roger S.Pressman, "Software Engineering- A Practitioner's Approach", 7th Edition ,McGraw Hill, 2010.

Data Mining

2.	Course Name	Data Mining	L	Т	Р		
3.	Course Code		3	0	0		
4.	Type of Course (u	f Course (use tick mark)		PE ()	OE ()		
5.	Pre-requisite (if any)	Database concepts	6. Frequency (use tick marks)	Even Odd () $()$	Either Every Sem () Sem ()		
7.	Total Number of	Lectures, Tutorials	s, Practical (assuming 1	2 weeks of one se	mester)		
Lectures = 36			Tutorials = 0	Practical = 0			
8.	Course Descriptio	n		1			
Th	e purpose of this co	urse is to provide ba	sic concepts of data min	ing and its applica	tions.		
Le	arning objectives:						
1.	To study the metho	dology of engineer	ing legacy databases for	data mining to der	ive business		
	rules for decision s			-			
2.	To analyze the data apply.	a, identify the proble	ems, and choose the rele	vant models and al	gorithms to		
9.	Course Outcomes	(COs):					
		· · ·	nplement classical algori	thms in data minir	ıg		
	2. Students will be a	able to assess the str	rengths and weaknesses				
3		of algorithms, and a earn data mining te	cchniques as well as met	hods in integrating	and interpreting		
•		-	eness, efficiency and qua				
10	. Unit wise detailed		ness, enterency and qua	ing for data analys			
	it-1	Number of	Introduction to Data	Mining			
		lectures = 09		8			
In	roduction Basic	concepts of Data N	/ /ining, Related technol	ogies (Machine I	earning DRMS		
		-	Stages of the Data Mi	e	<u> </u>		
		e e e e e e e e e e e e e e e e e e e	plications of Data Mini	0	č		
			eaning, Data transformat				
Ur	it – 2	Number of	Association Rule Min	ing			
		lectures = 09		0			
As	sociation Rule Mir	ning: Introduction a	nd Basic Concepts, Mot	tivation and termin	ology, Examples		
of	Association rule r	nining, Basic Algo	orithms, Parallel and D	istributed Algorit	hms, Comparing		
Ap	proaches, Incremen	tal Rules, Advance	d Association Rule Tec	hniques, Measurii	ng the Quality o		
	-						
Ru	les						

Methods, Rule Based Classification, Model Evaluation and Selection, Techniques to Improve

Unit – 3	Number of lectures = 09	Cluster Analysis
	-	Methods, Cluster Analysis, Partitioning methods, Hierarchical
methods, Densit	y based Methods, Grid B	Based Methods, Evaluation of Clustering
Advanced Cluste	er Analysis: Probabilistic	c model based clustering, Clustering High, Dimensional Data,
Clustering Graph	n and Network Data, Clu	stering with Constraints
Outlier Analysi	s. Basic concepts of (Dutlier analysis, Types of Outliers, Challenges of Outlier
	-	tatistical approaches, Proximity-Based Approaches,
Unit – 4	Number of lectures = 09	Text mining:
	lectures = 09	
Text mining: B	asic Concepts, Extracting	g attributes (Keywords), structural approaches (parsing, soft
parsing), Web M	lining: Introduction, Clas	ssifying web pages, extracting knowledge from the web
,Overview of Da	ta Mining Software and	Applications: Case Study: WEKA
11 Brief Descri	ption of self-learning /	F-learning component
	•	using the SGT E-Learning portal and choose the relevant
lectures delivere	d by subject experts of S	GT University.
The link to the L	I coming portal	
The link to the E	E-Learning portal.	
https://elearning	.sgtuniversity.ac.in/cours	se-category/
12 Books Reco	mmondod	
12. Books Reco Text Books	mmended	
Text Books		
Text Books 1. Jiawei Han, N	licheline Kamber, Jain P	Pei, "Data Mining: Concepts and Techniques", Third Edition
Text Books 1. Jiawei Han, N (The Morgan Ka	Iicheline Kamber, Jain P aufmann Series in Data N	Pei, "Data Mining: Concepts and Techniques", Third Edition Management System), 2012
Text Books 1. Jiawei Han, N (The Morgan Ka	Iicheline Kamber, Jain P aufmann Series in Data N	
Text Books 1. Jiawei Han, M (The Morgan Ka Reference Book	Iicheline Kamber, Jain P aufmann Series in Data N ss	
Text Books 1. Jiawei Han, M (The Morgan Ka Reference Book 1. David J. Hand	Iicheline Kamber, Jain P aufmann Series in Data N ss	Management System), 2012 dhraic Smyth "Principles of Data Mining"(Adaptive
Text Books 1. Jiawei Han, M (The Morgan Ka Reference Book 1. David J. Hanc Computation and	ficheline Kamber, Jain P aufmann Series in Data N ss I, HeikkiMannila and Pa d Machine learing), 2005	Management System), 2012 dhraic Smyth "Principles of Data Mining"(Adaptive

Data Mining Lab

2. Cour	rse	Data Mining Lab	L	Т		Р	
Name							
3. Cour	rse		0	0		2	
Code							
4. Type	e of Co	ourse (use tick	Core $()$	PE()		OE ()	
mark)							
5. Pre-			6. Frequency	Even	Odd	Either	Every
requisite (if	any)		(use tick marks)	(√)	0	Sem ()	Sem ()
7. Tota	l Num	ber of Lectures, Tu	torials, Practical (assu	uming 12	weeks of	f one sem	lester)
Lectures = 0		Tutorials = 0	Practical = 24				
8. Cou	rse De	scription: The purpo	ose of this course is to p	provide ba	asic conce	epts of dat	ta
mining and i	its appl	ications.					
9. Learnin	g obje	ctives:					
	-						

rules for decision support systems.

2. To analyze the data, identify the problems, and choose the relevant models and algorithms to apply.

10. Course Outcomes (COs):

The students will be able to: -

- 1. Enable students to understand and implement classical algorithms in data mining
- 2. Students will be able to assess the strengths and weaknesses of the algorithms, identify the application area of algorithms, and apply them.
- 3. Students would learn data mining techniques as well as methods in integrating and interpreting the data sets and improving effectiveness, efficiency and quality for data analysis.

3. List of Experiments

1. Introduction to exploratory data analysis

2. Demonstrate the Descriptive Statistics for a sample data like mean, median, variance and correlation etc.

3. Demonstrate Missing value analysis and different plots using sample data.

4. Demonstration of apriori algorithm on various data sets with varying confidence (%) and support (%).

5. Demo on Classification Techniques using sample data Decision Tree, ID3 or CART.

6. Demonstration of Clustering Techniques K-Mean and Hierarchical.

7. Simulation of Page Rank Algorithm and Demonstration on Hubs and Authorities.

8. Demo on Classification Technique using KNN.

9. Demonstration on Document Similarity Techniques and measurements.

10. Design and develop a recommendation engine for the given application.

Semester 3rd

Distributed Computing

1. Name of the Depa	artment- Computer Scienc	e & Engineering			
2. Subject Name	Distributed Computing	L	Т	Р	
		2	0	0	
3.Course Code		3	0	0	
4. Type of Course (u	ise tick mark)	Core $()$	PE()	OE ()	ΓΟ
5. Pre-requisite (if		6. Frequency	Even Od		Every Sem ()
any)		(use tick marks)	() (1)	Sem ()	
7 Total Number of	Lectures, Tutorials, Pract	,			
Lectures = 36		Tutorials =0	Practical =()	
	on: The course introduces th				stems: processes.
_	ing, synchronization, consis			-	-
	in paradigms in distributed			•	
	ystems. On the completion				
	g and be able to design and				
			-		
9. Course objectives	: The students will learn and	d understand			
1	tudents with contemporary	U	•		
2. To equip stu	dents with skills to analyze	and design distrib	uted applicati	ons.	
3. To provide r	naster skills to measure the	performance of di	stributed sync	chronization a	algorithms
	es (COs): On completion of				
	knowledge of the basic elem	nents and concept	s related to dis	stributed syst	em
technologies;					
	middleware technologies that	at support distribu	ted applicatio	ns such as RI	PC, RMI and
Object based		. 1 1 1			
	various techniques used for or the concepts of Resource and				algorithms
	the concepts of Consistency	U	•		aigoritimis
	owledge of Distributed File			e systems like	NES AES and
	e in building large-scale dist			e systems no	
11. Unit wise detaile					
Unit-1	Number of lectures = 9	Introdu	ction to Dist	ributed Syst	ems
Characterization of D	Distributed Systems: Issues,	Goals, and Types	of distributed	l systems, Di	stributed System
	oncepts, Software Concept.				
Middleware: Models	of Middleware, Services of	fered by middlew	are, Client Se	rver model.	
Unit – 2	Number of lectures = 9	Commu	nication		
	nterprocess communication	(IPC): MPI, Rem	ote Procedur	e Call (RPC)	, Remote Object
	Method Invocation (RMI).				
Message Oriented Co	ommunication, Stream Orier	nted Communicat	ion, Group Co	ommunication	1.
Unit – 3	Number of lectures = 9	Synchro			
	ion, Logical Clocks, Elec	U I			
	tion of mutual Exclusion A	Algorithm, Require	rements of M	lutual Exclus	sion Algorithms,
Performance measure			1 (. 1		
	gorithms: Lamport Algorith		U		U U
Ŭ	orithms: Suzuki-Kasami's	Ŭ		hal's Heura	stic Algorithm,
kaymond's Tree base	ed Algorithm, Comparative	Performance Ana	iysis		
Unit – 4	Number of lectures = 9		e and Process	- 1/-	4

Desirable Features of global Scheduling algorithm, Task assignment approach, Load balancing approach, load sharing approach.

Introduction to process management, process migration, Threads, University of Mumbai, B. E. (Computer Engineering), Rev. 2016 114 Virtualization, Clients, Servers, Code Migration.

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University. The link to the E-Learning portal.

13. Books Recommended

Text Books:

1. Andrew S. Tanenbaum and Maarten Van Steen, —Distributed Systems: Principles and Paradigms, 2nd edition, Pearson Education.

2. George Coulouris, Jean Dollimore, Tim Kindberg, , "Distributed Systems: Concepts and Design", 4th Edition, Pearson Education, 2005.

Reference Books:

1. A. S. Tanenbaum and M. V. Steen, "Distributed Systems: Principles and Paradigms", Second Edition, Prentice Hall, 2006.

2. M. L. Liu, —Distributed Computing Principles and Applications, Pearson Addison Wesley, 2004

AI & Soft Computing

1. Name of the Department- Computer Science & Engineering 2. Subject Name AI & Soft Computing I T P 3. Course Code 3 0 0
4. Type of Course (use tick mark) Core (√) PE() OE() 5. Pre-requisite (if any) 6. Frequency (use tick ()) (√) Either Every Se () any) (use tick ()) (√) Sem () () 7. Total Number of Lectures, Tutorials, Practical Imarks) Imarks) () (√) Sem () () 7. Total Number of Lectures, Tutorials, Practical Imarks) Imarks) Imarks) () () () () 8. Course Description: This course enables learning on different graph traversal techniques (BFS DFS) along with enhanced search algorithms like A* algorithm. Genetic algorithms are discussed along wimer Min-Max along with Fuzzy logic in SC. Imarks Imarks </th
4. Type of Course (use tick mark) Core (√) PE() OE() 5. Pre-requisite (if any) 6. Frequency (use tick ()) (√) Either Every Se () any) (use tick ()) (√) Sem () () 7. Total Number of Lectures, Tutorials, Practical Imarks) Imarks) () (√) Sem () () 7. Total Number of Lectures, Tutorials, Practical Imarks) Imarks) Imarks) () () () () 8. Course Description: This course enables learning on different graph traversal techniques (BFS DFS) along with enhanced search algorithms like A* algorithm. Genetic algorithms are discussed along wimmed along with fuzzy logic in SC. Imarks Imarks </td
4. Type of Course (use tick mark) Core (√) PE() OE() 5. Pre-requisite (if any) 6. Frequency (use tick ()) (√) Either Every Se () any) (use tick ()) (√) Sem () () 7. Total Number of Lectures, Tutorials, Practical Imarks) Imarks) () (√) Sem () () 7. Total Number of Lectures, Tutorials, Practical Imarks) Imarks) Imarks) () () () () 8. Course Description: This course enables learning on different graph traversal techniques (BFS DFS) along with enhanced search algorithms like A* algorithm. Genetic algorithms are discussed along wimmed along with fuzzy logic in SC. Imarks Imarks </td
 5. Pre-requisite (if any) 6. Frequency (use tick marks) 7. Total Number of Lectures, Tutorials, Practical Lectures = 36 Tutorials =0 Practical =0 8. Course Description: This course enables learning on different graph traversal techniques (BFS DFS) along with enhanced search algorithms like A* algorithm. Genetic algorithms are discussed along wi Min-Max Expert systems also discussed in detail along with Fuzzy logic in SC. 9. Course objectives: The students will learn and understand To conceptualize the basic ideas and techniques of AI and SC. To distinguish various search techniques and to make student understand knowledge representation and planning. To become familiar with basics of Neural Networks and Fuzzy Logic. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COs): On completion of this course, the students will be able to
any) (use tick marks) () (√) Sem () () 7. Total Number of Lectures, Tutorials, Practical Imarks) Imarks) Practical =0 8. Course Description: This course enables learning on different graph traversal techniques (BFS DFS) along with enhanced search algorithms like A* algorithm. Genetic algorithms are discussed along within-Max along with enhanced search algorithms like A* algorithm. Genetic algorithms are discussed along within-Max along with Fuzzy logic in SC. 9. Course objectives: The students will learn and understand 1. To conceptualize the basic ideas and techniques of AI and SC. 2. To distinguish various search techniques and to make student understand knowledge representation and planning. 3. To become familiar with basics of Neural Networks and Fuzzy Logic. 4. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COS): On completion of this course, the students will be able to
marks) marks) 7. Total Number of Lectures, Tutorials, Practical Lectures = 36 Tutorials =0 Practical =0 8. Course Description: This course enables learning on different graph traversal techniques (BFS DFS) along with enhanced search algorithms like A* algorithm. Genetic algorithms are discussed along wi Min-Max Expert systems also discussed in detail along with Fuzzy logic in SC. 9. Course objectives: The students will learn and understand 1. To conceptualize the basic ideas and techniques of AI and SC. 2. To distinguish various search techniques and to make student understand knowledge representation and planning. 3. To become familiar with basics of Neural Networks and Fuzzy Logic. 4. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COS): On completion of this course, the students will be able to
 7. Total Number of Lectures, Tutorials, Practical Lectures = 36 Tutorials =0 Practical =0 8. Course Description: This course enables learning on different graph traversal techniques (BFS DFS) along with enhanced search algorithms like A* algorithm. Genetic algorithms are discussed along wi Min-Max Expert systems also discussed in detail along with Fuzzy logic in SC. 9. Course objectives: The students will learn and understand To conceptualize the basic ideas and techniques of AI and SC. To distinguish various search techniques and to make student understand knowledge representation and planning. To become familiar with basics of Neural Networks and Fuzzy Logic. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COs): On completion of this course, the students will be able to
Lectures = 36 Tutorials =0 Practical =0 8. Course Description: This course enables learning on different graph traversal techniques (BFS DFS) along with enhanced search algorithms like A* algorithm. Genetic algorithms are discussed along wi Min-Max Genetic algorithms are discussed along wi algorithm Expert systems also discussed in detail along with Fuzzy logic in SC. P. Course objectives: The students will learn and understand 1. To conceptualize the basic ideas and techniques of AI and SC. 2. To distinguish various search techniques and to make student understand knowledge representation and planning. 3. To become familiar with basics of Neural Networks and Fuzzy Logic. 4. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COs): On completion of this course, the students will be able to
 8. Course Description: This course enables learning on different graph traversal techniques (BFS DFS) along with enhanced search algorithms like A* algorithm. Genetic algorithms are discussed along wit Min-Max algorithm Expert systems also discussed in detail along with Fuzzy logic in SC. 9. Course objectives: The students will learn and understand To conceptualize the basic ideas and techniques of AI and SC. To distinguish various search techniques and to make student understand knowledge representation and planning. To become familiar with basics of Neural Networks and Fuzzy Logic. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COs): On completion of this course, the students will be able to
 DFS) along with enhanced search algorithms like A* algorithm. Genetic algorithms are discussed along with Min-Max Expert systems also discussed in detail along with Fuzzy logic in SC. 9. Course objectives: The students will learn and understand To conceptualize the basic ideas and techniques of AI and SC. To distinguish various search techniques and to make student understand knowledge representation and planning. To become familiar with basics of Neural Networks and Fuzzy Logic. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COs): On completion of this course, the students will be able to
Min-Max algorithm Expert systems also discussed in detail along with Fuzzy logic in SC. 9. Course objectives: The students will learn and understand 1. To conceptualize the basic ideas and techniques of AI and SC. 2. 2. To distinguish various search techniques and to make student understand knowledge representation and planning. 3. 3. To become familiar with basics of Neural Networks and Fuzzy Logic. 4. 4. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COs): On completion of this course, the students will be able to
 Expert systems also discussed in detail along with Fuzzy logic in SC. 9. Course objectives: The students will learn and understand To conceptualize the basic ideas and techniques of AI and SC. To distinguish various search techniques and to make student understand knowledge representation and planning. To become familiar with basics of Neural Networks and Fuzzy Logic. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COs): On completion of this course, the students will be able to
 9. Course objectives: The students will learn and understand To conceptualize the basic ideas and techniques of AI and SC. To distinguish various search techniques and to make student understand knowledge representation and planning. To become familiar with basics of Neural Networks and Fuzzy Logic. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COs): On completion of this course, the students will be able to
 9. Course objectives: The students will learn and understand To conceptualize the basic ideas and techniques of AI and SC. To distinguish various search techniques and to make student understand knowledge representation and planning. To become familiar with basics of Neural Networks and Fuzzy Logic. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COs): On completion of this course, the students will be able to
 To conceptualize the basic ideas and techniques of AI and SC. To distinguish various search techniques and to make student understand knowledge representation and planning. To become familiar with basics of Neural Networks and Fuzzy Logic. To familiarize with Hybrid systems and to build expert system. Course Outcomes (COs): On completion of this course, the students will be able to
 To conceptualize the basic ideas and techniques of AI and SC. To distinguish various search techniques and to make student understand knowledge representation and planning. To become familiar with basics of Neural Networks and Fuzzy Logic. To familiarize with Hybrid systems and to build expert system. Course Outcomes (COs): On completion of this course, the students will be able to
 To distinguish various search techniques and to make student understand knowledge representation and planning. To become familiar with basics of Neural Networks and Fuzzy Logic. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COs): On completion of this course, the students will be able to
 representation and planning. 3. To become familiar with basics of Neural Networks and Fuzzy Logic. 4. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COs): On completion of this course, the students will be able to
 To become familiar with basics of Neural Networks and Fuzzy Logic. To familiarize with Hybrid systems and to build expert system. 10. Course Outcomes (COs): On completion of this course, the students will be able to
4. To familiarize with Hybrid systems and to build expert system.10. Course Outcomes (COs): On completion of this course, the students will be able to
10. Course Outcomes (COs): On completion of this course, the students will be able to
1. Identify the various characteristics of Artificial Intelligence and Soft Combuting technolies.
 Choose an appropriate problem solving method for an agent to find a sequence of actions to reac
the goal state.
3. Analyze the strength and weakness of AI approaches to knowledge representation, reasoning and
planning.
4. Construct supervised and unsupervised ANN for real world applications.
5. Design fuzzy controller system. 6 Apply Hybrid approach for expert system design.
11. Unit wise detailed content
Unit-1Number of lectures = 9Introduction to Artificial Intelligence(AI) and
Soft Computing
Intelligent Agents : Agents and Environments ,Rationality, Nature of Environment, Structure of Agen
types of Agent
Soft Computing: Introduction of soft computing, soft computing vs. hard computing, various types of so
computing techniques
computing techniques.
Unit - 2Number of lectures = 9Problem Solving
Unit - 2Number of lectures = 9Problem SolvingProblem Solving Agent, Formulating Problems, Example Problems
Unit - 2Number of lectures = 9Problem SolvingProblem Solving Agent, Formulating Problems, Example ProblemsUninformed Search Methods: Depth Limited Search, Depth First Iterative Deepening (DFID), Informed
Unit - 2Number of lectures = 9Problem SolvingProblem Solving Agent, Formulating Problems, Example ProblemsUninformed Search Methods: Depth Limited Search, Depth First Iterative Deepening (DFID), InformedSearch Method: A* Search
Unit - 2Number of lectures = 9Problem SolvingProblem Solving Agent, Formulating Problems, Example ProblemsUninformed Search Methods: Depth Limited Search, Depth First Iterative Deepening (DFID), Informed Search Method: A* SearchOptimization Problems: Hill climbing Search, Simulated annealing, Genetic algorithm
Unit - 2Number of lectures = 9Problem SolvingProblem Solving Agent, Formulating Problems, Example ProblemsUninformed Search Methods: Depth Limited Search, Depth First Iterative Deepening (DFID), InformedSearch Method: A* SearchOptimization Problems: Hill climbing Search, Simulated annealing, Genetic algorithmUnit - 3Number of lectures = 9Knowledge, Reasoning and Planning
Unit - 2Number of lectures = 9Problem SolvingProblem Solving Agent, Formulating Problems, Example ProblemsUninformed Search Methods: Depth Limited Search, Depth First Iterative Deepening (DFID), InformedSearch Method: A* SearchOptimization Problems: Hill climbing Search, Simulated annealing, Genetic algorithmUnit - 3Number of lectures = 9Knowledge based agents, First order logic: syntax and Semantic, Knowledge Engineering in FO
Unit - 2Number of lectures = 9Problem SolvingProblem Solving Agent, Formulating Problems, Example ProblemsUninformed Search Methods: Depth Limited Search, Depth First Iterative Deepening (DFID), InformedSearch Method: A* SearchOptimization Problems: Hill climbing Search, Simulated annealing, Genetic algorithmUnit - 3Number of lectures = 9Knowledge, Reasoning and Planning

Introduction to Fuzzy Set: Fuzzy set theory, Fuzzy set versus crisp set, Crisp relation & fuzzy relations, membership functions, Fuzzy Logic: Fuzzy Logic basics, Fuzzy Rules and Fuzzy Reasoning. Fuzzy inference systems: Fuzzification of input variables, Defuzzification and fuzzy controllers.

Expert system : Introduction, Characteristics, Architecture, Stages in the development of expert system

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University. The link to the E-Learning portal.

13. Books Recommended

Text Books:

- 1. Stuart J. Russell and Peter Norvig, "Artificial Intelligence A Modern Approach —Second Edition" Pearson Education.
- 2. Samir Roy and Chakraborty, -Introduction to soft computing, Pearson Edition.
- 3. S.N.Sivanandam, S.N.Deepa "Principles of Soft Computing" Second Edition, Wiley Publication.
- 4. S.Rajasekaran and G.A.VijayalakshmiPai "Neural Networks, Fuzzy Logic and Genetic Algorithms" PHI Learning.
- 5. N.P.Padhy, —Artificial Intelligence and Intelligent Systems, Oxford University Press.

Reference Books:

- 1. Elaine Rich and Kevin Knight —Artificial Intelligencel Third Edition, Tata McGraw-Hill Education Pvt. Ltd., 2008.
- 2. Satish Kumar "Neural Networks A Classroom Approach" Tata McGrawHill.
- 3. Zimmermann H.S "Fuzzy Set Theory and its Applications"Kluwer Academic Publishers.
- 4. Hagan, Demuth, Beale, "Neural Network Design" CENGAGE Learning, India Edition.
- 5. J.-S.R.Jang "Neuro-Fuzzy and Soft Computing" PHI 2003.
- 6. JacekM. Zurada "Introduction to Artificial Neural Sytems" Jaico Publishing House.

1. Name of the Department-	Computer Science & Eng	ineering	
1. Department	Computer science &		
	Engineering		
2. Course Distributed	L	Τ	Р
Name Computing			
Lab			
3. Course	0	0	2
Code			
4. Type of Course (use tick mark)	Core (\checkmark)	PE ()	OE ()
5. Pre-	6. Frequency (use	Even Odd	Either Every
requisite (if	tick marks)	(✔)	Sem() Sem ()
any)			
7. Total Number of Lectures	s, Tutorials, Practical (assu	uming 12 weeks o	f one semester)
Lectures = 0	Tutorials = 0	Practical = 24	

Course Description:

The course introduces the main principles underlying distributed systems: processes,

communication, naming, synchronization, consistency, fault tolerance, and security. Students will be familiar with some of the main paradigms in distributed systems: object-based systems, file systems, web-based and coordination-based systems. On the completion of the unit, students will understand the fundamentals of distributed computing and be able to design and develop distributed systems and applications.

9. Learning objectives:

- **1.** To provide students with contemporary knowledge in distributed systems
- 2. To equip students with skills to analyze and design distributed applications.
- **3.** To provide master skills to measure the performance of distributed synchronization algorithms.

10. Course Outcomes (COs):

- 1. Demonstrate knowledge of the basic elements and concepts related to distributed system technologies;
- 2. Illustrate the middleware technologies that support distributed applications such as RPC, RMI and Object based middleware.
- 3. Analyze the various techniques used for clock synchronization and mutual exclusion
- 4. Demonstrate the concepts of Resource and Process management and synchronization algorithms
- 5. Demonstrate the concepts of Consistency and Replication Management
- **6.** Apply the knowledge of Distributed File System to analyze various file systems like NFS, AFS and the experience in building large-scale distributed applications.

11. List of Experiment

- 1. Client/server using RPC/RMI.
- 2. Implementation of multi tread application
- 3. Inter-process communication
- 4. Group Communication
- 5. Load Balancing Algorithm.
- 6. Name Resolution protocol.
- 7. Election Algorithm.
- 8. Clock Synchronization algorithms.
- 9. Mutual Exclusion Algorithm.
- 10. Deadlock management in Distributed systems
- 11. Distributed File System
- 12. CORBA

Core (✓) . Frequency (use tick marks) ials, Practical (assur iutorials = 0 different graph t s like A* algorithm. Min-Max along with Fuzzy log	ming 12 w Practica raversal t Genetic al gic in SC.	OddEi (\checkmark) Seeeks of one $l = 24$ techniques	(BFS & re discussed	n () DFS)
 Frequency (use tick marks) ials, Practical (assurbut of the second structure) different graph t s like A* algorithm. Min-Max 	Even ming 12 w Practica craversal t Genetic al gic in SC.	OddEi (\checkmark) Seeeks of one $l = 24$ techniques	ither Eve em() Sen e semester) (BFS & re discussed	n () DFS) d along
tick marks) ials, Practical (assur utorials = 0 different graph t s like A* algorithm. Min-Max	ming 12 w Practica raversal t Genetic al gic in SC.	$(\checkmark) \qquad Se \\ \hline eeks of one \\ l = 24 \\ techniques$	em() Sen e semester) (BFS & re discussed	n () DFS) d along
'utorials = 0 different graph t s like A* algorithm. Min-Max	Practica raversal t Genetic al gic in SC.	l = 24 techniques	(BFS & re discussed	DFS) d along
different graph t s like A* algorithm. Min-Max	raversal t Genetic al gic in SC.	techniques	re discussed	d along
s like A* algorithm. Min-Max	Genetic al	-	re discussed	d along
and techniques of AI ar hniques and to make str of Neural Networks and ms and to build expert s s to build intelligent sys l apply appropriate sear	udent under l Fuzzy Log system. stems	ic.		
edge Representation a to reach goal state ts Model for a proble er system	formulation nd Create• m	Knowledg		
	anguage edge Representation a to reach goal state tts Model for a proble ler system	anguage edge Representation and Create to reach goal state tts Model for a problem ler system sed / Unsupervised Neural Netwo	anguage edge Representation and Create• Knowledg to reach goal state tts Model for a problem ler system	anguage edge Representation and Create• Knowledge Base to reach goal state tts Model for a problem ler system sed / Unsupervised Neural Network learning rules for a

MACHINE LEARNING

1. Name of the Depar	tment- Computer S	Science Engineering				
2. Course Name	Machine	L	Т		Р	
	Learning					
3. Course Code		3	0		0	
4. Type of Course (use tick mark)Core (✓)PE()OE ()						
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	0	()	Sem ()	Sem ()
7. Total Number of L	ectures, Tutorials,	Practical (assuming 12	weeks o	f one sen	nester)	
Lectures = 36 Tutorials = 0 Practical = 0						
8. Course Description	l					
Machine Learning is a m	ethod of data analysis	that automates analytical r	nodel buil	ding. Mac	hine Learr	ning is one
of the fastest growing	fields in the sector of	of Computer Science Eng	gineering	and Infor	mation Te	chnology.

of the fastest growing fields in the sector of Computer Science Engineering and Information Technology. Nowadays, every student wants to enhance their Machine Learning Course skills, which is proving to be hugely beneficial in increasing the chances of their placements.

9. Learning Objectives:

- Acquire theoretical Knowledge on setting hypothesis for pattern recognition
- Apply suitable machine learning techniques for data handling and to gain knowledge from it.
- Evaluate the performance of algorithms and to provide solution for various real-world applications

10. Course Outcomes (COs):

- Recognize the characteristics of Machine Learning techniques that enable to solve real world problems.
- Recognize the characteristics of machine learning strategies.
- Apply various supervised learning methods to appropriate problems.
- Identify and integrate more than one techniques to enhance the performance of learning.
- Create probabilistic and unsupervised learning models for handling unknown pattern.
- Analyze the co-occurrence of data to find interesting frequent patterns.

11. Unit wise detailed content

Unit-1	Number of	
	lectures = 9	

Introduction To Machine Learning

Introduction, Examples of Various Learning Paradigms, Perspectives and Issues, Version Spaces, Finite and Infinite Hypothesis Spaces, PAC Learning, VC Dimension. Supervised Learning: Decision Trees: ID3, Classification and Regression Trees, Regression: Linear Regression, Multiple Linear Regression, Logistic Regression, Neural Networks: Introduction, Perceptron, Multilayer Perceptron, Support vector machines: Linear and Non-Linear, Kernel Functions, K-Nearest Neighbours.

Unit – 2	Number of
	lectures = 9

Ensemble Learning

Model Combination Schemes, Voting, Error-Correcting Output Codes, Bagging: Random Forest Trees, Boosting: Adaboost, Stacking. Unsupervised Learning: Introduction to Clustering, Hierarchical: AGNES, DIANA, Partitional: K-means clustering, K-Mode Clustering, Expectation Maximization, Gaussian Mixture Models.

Unit – 3	Number of	
	lectures = 9	
Probabilistic Lear	ning	
Bayesian Learning	g, Bayes Optimal Classifi	ier, Naıve Bayes Classifier, Bayesian Belief Networks.
Learning Associat	ion Rules: Mining Frequ	ent Patterns -basic concepts –Apriori algorithm, FP-Growth
algorithm, Associa	ation-based Decision Tre	es.
Unit – 4	Number of	
	lectures = 9	
Machine Learning i		
		e Learning Experiments, Other Issues: Handling imbalanced
data sets, Recent Tr	ends in Big Data Analytics	
12. Brief Descrip	tion of self-learning / E-	learning component
		sing the SGT E-Learning portal and choose the relevant
	by subject experts of SG	
The link to the E-l		•
	gtuniversity.ac.in/course-	-category/
13. Books Recor		
Text Books		
I CAT DUUKS		
• Ethem Alı	paydin."IntroductiontoM	achineLearning", MITPress, Prentice Hall of India, Third
Edition20	•	
-		adeh, Ameet Talwalkar "Foundations of Machine Learning"
MIT Press	-	aden, Ameet Talwaikar Toundations of Machine Learning
	·	", McGraw Hill, 3rdEdition,1997.
		, we of a within, studention, 1997.
14. Reference B	ooks	
• CharuC.Ag	garwal,"DataClassification	nAlgorithmsandApplications",CRCPress,2014.
		ERING Algorithms and Applications", CRC Press, 2014.
		A Probabilistic Perspective", The MIT Press, 2012.
		dian Dai "Data Mining Concents and Tashnigues" 2nd adition

• Jiawei Hanand Micheline Kambers and Jian Pei, "Data Mining Concepts and Techniques", 3rd edition, Morgan Kaufman Publications, 2012.

1. Name of the I	Department- Computer	r Science & Engineeri	na			
1. Name of the f 2. Course	Fundament		<u>ng</u>	Т	1	P
Name	Tundament	L		1		L
3. Course Co	ode	0		0		2
4. Type of C	ourse (use tick mark)	Core $()$	P	Е()	OI	Е ()
5. Pre-requi	site	6. Frequency	Even	Odd	Either	Every
(if any)		(use tick marks)	(√)	0	Sem ()	Sem ()
	nber of Lectures, Tuto	rials, Practical (assum	ning 12 we	eeks of o	ne semeste	er)
Lectures = 0		Tutorials = 0	Praction	cal = 24		
8. Course De						
Learning objectiv	ves:					
	able machine learning te	-	-	-	-	rom it.
	he performance of algori	ithms and to provide so	lution for	various 1	real-world	
application						
	utcomes (COs):	laahina Laamina taahni	anas that	anahla ta		would
• Recognize problems.	the characteristics of M	achine Learning techni	ques that	enable to	sorve rear	world
0	the characteristics of ma	0 0				
	ious supervised learning					
_	kills to present scientific	-	f figures, c	lata sumi	maries, for	mal
scientific v	writing, and oral presenta	ations.				
10. List of Ex	periments					
	sion Tree learning					
2.Implement Logi	stic Regression					
3.Implement class	sification using Multilay	er perceptron				
4.Implement class	sification using SVM					
5.Implement Adal	poost					
6.Implement Bagg	ging using Random Fore	ests				
7.Implement K-m	eans Clustering to Find	Natural Patterns in Dat	a			
8.Implement Hier	archical clustering					
9.Implement K-m	ode clustering					
10.Implement Ass	sociation Rule Mining us	sing FP Growth				
-	based on association rule					
12.Implement Gau	ussian Mixture Model U	sing the Expectation M	laximizati	on		
-	algorithm with balance	U 1				
	Machine Learning algo					
-	earest neighbours algori					
-	cription of self-learning		ent			
		,				

Machine Learning Lab

Streaming Data Analytics

	Streaming	L	Т		Р	
3. Course Code	data analytics	3	0		0	
	tial mark)		•			
4. Type of Course (use	uck mark)	$\frac{\text{Core}\left(\checkmark\right)}{\left(-\Gamma\right)}$	PE()	0.11	OE ()	Г
5. Pre-requisite (if		6. Frequency (use tick marks)	Even ()	Odd (✓)	Either Sem ()	Every Sem ()
any) 7 Total Number of Le	cturos Tutorials	Practical (assuming 12				Sem
$\frac{7.10 \text{ tar Number of Let}}{\text{Lectures} = 36}$	ciures, ruioriais,	Tutorials = 0	Practica		iester)	
8. Course Description		1 utor lais – 0	114000	u – U		
Spark Streaming, and Kafl application. Students will streaming console. 9. Learning Objective	ka Streaming. The co compile data and ru es:	in modern data engineerin omponents of data streamin n analytics, as well as drav , algorithms, methodolog	g systems v insights	and build from repo	a real-time rts genera	e analyti ted by tl
data and also prov 10. Course Outcomes (-	vledge for handling and a	inalyzing	streamin	g data.	
	(= = ··) ·					
Recognize the clIdentify and app	haracteristics of da	ta streams that make it us prithms for analyzing the				oblems.
 Recognize the cl Identify and approblems. 	haracteristics of da ly appropriate algo	prithms for analyzing the	data strea			oblems.
 Recognize the ch Identify and app problems. Implement different 	haracteristics of da ly appropriate algo rent algorithms for	orithms for analyzing the analyzing the analyzing the data stream	data strea			oblems.
 Recognize the cl Identify and app problems. Implement differ Identify the metric 	haracteristics of da ly appropriate algo rent algorithms for rics and procedures	prithms for analyzing the	data strea			oblems.
 Recognize the cl Identify and approblems. Implement differ Identify the metric the interval of the interva	haracteristics of da ly appropriate algo rent algorithms for rics and procedures	orithms for analyzing the analyzing the analyzing the data stream	data strea			oblems.

The Very Fast Decision Tree Algorithm (VFDT), The Base Algorithm, Analysis of the VFDT Algorithm, Extensions to the Basic Algorithm: Processing Continuous Attributes, Functional Tree Leaves, Concept Drift. Clustering from Data Streams: Clustering Examples: Basic Concepts, Partitioning Clustering -The Leader Algorithm, Single Pass k-Means, Micro Clustering, Clustering Variables: A Hierarchical Approach.

Unit – 3	Number of lectures = 9	
Frequent Pattern Mi		
	0	reams-Landmark Windows, Mining Recent Frequent Item
		ranularities Sequence Pattern Mining-Reservoir Sampling
for Sequential Patter	rn Mining over data stre	ams, Evaluating Streaming Algorithms: Evaluation Issues,
Design of Evaluation	n Experiments, Evaluat	ion Metrics, Error Estimators using a Single Algorithm
and a Single Datas	et, Comparative Asses	sment, The 0-1 loss function, Evaluation Methodology
in Non-Stationary	Environments, The Pag	ge-Hinkley Algorithm.
Unit – 4	Number of	
	lectures = 9	
Complex Event Proce	ssing	
		tures of CEP, Need for CEP, CEP Architectural Layers, Scaling
	and Causality, Event Patte	erns, Rules and Constraint, STRAW-EPL, Complex Events and
Event Hierarchies.		
	on of self-learning / E-	
	e	ing the SGT E-Learning portal and choose the relevant
-	y subject experts of SG	l'University.
The link to the E-Le		
https://elearning.sgt	university.ac.in/course-	category/
13. Books Recom	nended	
Text Books		
	"Warnaladaa Diagaayaa	- from Data Stream ?' CDC Broom 2010
	0	from Data Streams", CRC Press,2010.
David Luck	ham, "The Power of Ev	ents: An Introduction to Complex Event Processing in
David Luck	0	ents: An Introduction to Complex Event Processing in
David Luck	ham, "The Power of Ev Enterprise Systems", A	ents: An Introduction to Complex Event Processing in
David Luck Distributed 14. Reference Boo	ham, "The Power of Ev Enterprise Systems", A	ents: An Introduction to Complex Event Processing in

2. Con Name	urse	Streaming Data Analytics Lab	L		Т]	Р
3. Co	urse Code		0		0		2
4. Tyj	pe of Cours	e (use tick mark)	Core (√)	P	E()	OI	E ()
	e-requisite		6. Frequency	Even	Odd	Either	Every
(if any)			(use tick marks)	(√)	0	Sem ()	Sem ()
7. Tot	tal Number	of Lectures, Tuto	ials, Practical (assum	ing 12 we	eks of o	ne semeste	er)
Lectures =			Tutorials = 0		cal = 24		
8. Co	urse Descri	ntion					
	objectives:	ption					
pr	oblems.		porithms for analyzing t		reams for	r variety o	f
		ferent algorithms fo	or analyzing the data str	eams.			
• Id	entity the m	etrics and procedure	es to evaluate a model.				
	t of Experii			K (
-	e	1 0 0	e like storm or STREAN ple: VFDT, CVFDT.	vI etc.			
-	ntation of C	• · · · ·	pie. VFD1, CVFD1.				
•		requent pattern mini	ing				
*		engine like ESPER	•				
	e	č	l operations on single s	tream			
6.Exercise			l operations on multiple				
	with continu						
7.Exercise			ral operators on single s	stream			
7.Exercise 8.Exercise 9.Exercise	with continu	uous queries tempor uous queries tempor	ral operators on multiple	e streams			
7.Exercise 8.Exercise 9.Exercise 10.Exercise	with continu with continu e with comp	uous queries tempor uous queries tempor		e streams		erators on	
7.Exercise 8.Exercise 9.Exercise 10.Exercise multiple st	with continu with continu e with comp reams	uous queries tempor uous queries tempor lex continuous quer	ral operators on multiple	e streams onal & terr		erators on	

Streaming Data Analytics Lab

Domain Specific Predictive Analytics

1. Name of the Depar	rtment- Computer S	Science Engineering				
2. Course Name	Domain specific predictive analysis	L	Т		P	
3. Course Code		3	0		0	
4. Type of Course (us	se tick mark)	Core (✓)	PE()		OE ()	
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	0	(✓)	Sem ()	Sem ()
7. Total Number of L	ectures, Tutorials,	Practical (assuming 12	weeks o	f one sen	1ester)	
Lectures = 36		Tutorials = 0	Practic	al = 0		
8. Course Description	n	•	•			

Performing prediction on every domain belonging to industry/firm is measured as effective management. This prediction helps the firm effectively manage human power and other resources, which leads to good productivity. In this chapter, the authors discuss applications where predictive analytics are applied. The applications are as follows: evaluation of customer lifetime value used in retail industry, customer churn management in the telecommunication sector, credit scoring in banking, sentiment analysis on product reviews to understand the customer opinion, clinical decision support systems, news analytics, and social media analytics.

9. Learning Objectives:

It introduces theoretical foundations, algorithms, methodologies for analyzing data in various domains such Retail, Finance, Risk and Healthcare

10. Course Outcomes (COs):

- Recognize challenges in dealing with data sets in domains such as finance, risk and healthcare. •
- Identify real-world applications of machine learning in domains such as finance, risk and healthcare.
- Identify and apply appropriate algorithms for analyzing the data for variety of problems in finance, risk and healthcare.
- Make choices for a model for new machine learning tasks based on reasoned argument

• Wake choices for a model for new machine rearing tasks based on reasoned argument						
11. Unit wise detailed content						
Unit-1	Number of					
	lectures = 9					
Retail Analytics						
Understanding Custon	ner: Profiling and	Segmentation, Modelling Churn. Modelling Lifetime				
Value, Modelling Risk,	Market Basket Ana	lysis, Risk Analytics: Risk Management and Operational				
Hedging: An Overvie	ew, Supply Chain	Risk Management, A Bayesian Framework for Supply				
Chain Risk Managemer	nt, Credit Scoring an	d Bankruptcy Prediction.				
Unit – 2	Number of					
	lectures = 9					

Financial Data Analytics

Financial News analytics: Framework, techniques, and metrics, News events impact market sentiment, Relating news analytics to stock returns. Financial Time Series Analytics: Financial Time Series and Their Characteristics, Common Financial Time Series models, Autoregressive models, Markov chain models, Time series models with leading indicators, Long term forecasting.

Unit – 3	Number of	
	lectures = 9	
ntroduction Hea	Ithcare Analytics	· ·
An Introduction t	o Healthcare Data Analy	tics, Electronic Health Records, Privacy-Preserving Data
Publishing Metho	ods in Healthcare, Clinica	al Decision Support Systems
Unit – 4	Number of	
	lectures = 9	
Healthcare Data A		
		ning for Clinical Text: Core NLP Components, Information
Extraction and Na	amed Entity Recognition,	Social Media Analytics for Healthcare: Tracking of Infectious
Disease Outbreaks	, Readmission risk Predicti	on, Genomic Data Analytics: Microarray Data, Microarray Data
		lized Medicine, Patient Survival Prediction from Gene Expression
Data, Genome Seq		
	ption of self-learning / E	
		using the SGT E-Learning portal and choose the relevant
	l by subject experts of SC	GT University.
The link to the E-	Learning portal.	
https://elearning.	sgtuniversity.ac.in/course	e-category/
13. Books Reco	mmended	
Text Books		
Chris Ch	apman, Elea McDonnell	Feit"R for Marketing Research and Analytics", Springer, 2015.
	. .	okbook: Modeling Data for Marketing, Risk, and Customer
	ship Management", Wile	e e
	1 0 .	garwal "Healthcare Data Analytics", CRC Press,2015
Chandan	11. 11. uu,, enuru e. 116e	
14. Reference H	Books	
Rene Carr	nona "Statistical Analysis o	of Financial Data in R", Springer,2014.
		ly Chain Management" Auerbach Publications 2006

- James B. Ayers "Handbook Of Supply Chain Management" Auerbach Publications, 2006.
- PanosKouvelis, Lingxiu Dong, OnurBoyabatli, RongLi "The Handbook of Integrated Risk Management in Global Supply Chains", Wiley,2012.

	DEPARTMENT ELECTIVES						
Specialization	ІоТ	Data Science	Cyber Security & Forensics	AIML			
DE-XIII	Microcontrollers for IoT Prototyping	Information Visualization	Cyber Attacks Detection and Prevention Systems	Soft Computing Techniques			
DE-XIV	Wireless Sensor Networks and IoT	Web Intelligence and Big Data	Cryptosystem	Knowledge Engineering and Intelligent Systems			
DE-XV	Signal Processing and Data Analytics	Bigdata Frameworks	Digital Forensics	Deep Learning and its Applications			
DE-XVI	DE-XVI Micro Systems & Hybrid TechnologyIoT and Comput: DE-XVII Cloud and Fog ComputingNoSQL		Mobile and Wireless Security	Bio-Inspired Computing			
DE-XVII			Malware Analysis	Machine Learning for Signal Processing			

IoT

Microcontrollers for IoT Prototyping

1. Name of the Depar	tment- Computer S	Science & Engineering				
2. Course Name	Microcontrollers	L	Т		Р	
	for IoT					
	Prototyping					
	Tototyping					
3. Course Code		3	0		0	
4. Type of Course (use	tick mark)	Core ()	PE(✓)		OE ()	
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	0	(✔)	Sem ()	Sem ()
	ectures, Tutorials,	Practical (assuming 12			nester)	
Lectures = 36		Tutorials = 0	Practica	$\mathbf{l} = 0$		
8. Course Description	l					
This course is aimed to	Introduce low power	microcontrollers and to de	evelop the	skill set o	of program	ming low
power sensing applicatio	•		ľ		1 0	C
power sensing upplicatio	115.					
9. Learning Objectiv	200					
9. Learning Objectiv	ves:					
1 Turn out the law our	ladaa af waniawa nanin	h	1		in a minad	~ ~
1. Impart the know wireless means.	ledge of various perip	heral related to sensing and		ication us	sing wired	Or
	lanta hu introducina th	am Advanced ADM Contra		ntnollong		
10	•	nem Advanced ARM Corte				
_		ld IoT systems and sensor	interfacing	5.		
10. Course Outcomes						
The students w						
-		ms for low power microcor	ntrollers for	r sensor a	application	s.
	asic and advanced pro	0				
-	oloy analog and digita					
-	nication system with s					
5. Design Develop	IoT systems using Wi	i-Fi CC3200.				
		read sensor data and posti	ng in clou	d.		
11. Unit wise detailed	content					
Unit-1	Number of	MSP430 microcontroller	S			
	lectures = 9					
Architecture of the MS	P430, Memory, Add	ressing modes, Reflection	s on the	CPU inst	truction se	et. Clock
		Functions and subroutines				
•	•	sociated with interrupts, Lo	Ū.			
IIn:4 2	Number of	ADM Contor MV mission	ontrollor			
Unit – 2		ARM Cortex MX microc	ontroller			
ADM Contra MA	lectures = 9	ing Thumb 2 Tester 1		In a treat		outors N/A
		tics, Thumb-2 Technolog				
		iction set, floating point	operatio	Adv.	anced Co	IVIX
Microcontroller, core, ar	cintecture, on-chip wi	-11.				

Linit 2		
Unit – 3	Number of lectures = 9	Display and Communication modules
GPIO, LCD display,		elays, Peripheral programming SPI, I2C, UART, Zigbee controller.
Sensors interfacing	: Sensors interfacing	g techniques- Port Programming, ADC, SPI thermometer, I2C
		alation, DTH11, single wire thermometer, Frequency counters.
Unit – 4	Number of lectures = 9	Microcontrollers for IoT
	•	oint and station point mode, HTTP, MQTT, transmission and
receiving, Intel-Gallil		
-		board, porting Raspbian, sensor interface examples, Python ems using Arduino boards.
1 0 0		gging with cloud: Thing speak, Things board, Blync platform.
		/ E-learning component
	6	n using the SGT E-Learning portal and choose the relevant
lectures delivered b	y subject experts of	SGT University.
13. Books Recomm	lended	
Text Book(s)		
1. John H. Davies, "M	SP430 Microcontrolle	er Basics", 2011, 2nd ed., Newnes publishing, New York.
	1D 1 CM 1 C	
2. Jacob Fraden, "Hand New York.	1 Book of Modern Ser	nsors: physics, Designs and Applications", 2014, 4th ed., Springer,
INEW TOIK.		
Reference Book(s)		
	Digital Sensors and Set	nsor Systems: Practical Design", 2011, 1st ed., IFSA publishing,
1. Sergey Y. Yurish,"I New York.	o, "Introduction to AR	nsor Systems: Practical Design", 2011, 1st ed., IFSA publishing, M Cortex –M3 Microcontrollers", 2012, 5th ed., Create Space

Microcontrollers for IoT Prototyping Lab

1. Name of the Dep	artment- Computer	Science & Engineering	ŗ	
2. Course	Microcontrollers for oT Prototyping Lab	L	Т	Р
3. Course Code		0	0	2
	rse (use tick mark)	Core ()	PE (√)	OE ()
5. Pre-requisite (if any)		6. Frequency (use tick marks)	Even Odd () $()$	Either Every Sem () Sem ()
		als, Practical (assumin		ne semester)
Lectures = 0		Tutorials = 0	Practical = 24	
develop the skill set	t of programming low p	s aimed to Introduce low ower sensing applications	•	ollers and to
9 Learning objective				
-	U 1	eripheral related to sens	ing and communi	cation using
wired or wireless		a them Advanced ADN	Contax miano ao	ntuallana
	•	g them Advanced ARN build IoT systems and s		
10. Course Outcom		build for systems and s	sensor interfacing	•
	will be able to:-			
		grams for low power m	icrocontrollers fo	r sensor
applications.	evelop enioedded pro	gruins for low power in		501501
	M basic and advanced	nrograms		
-	deploy analog and di			
	munication system with			
	lop IoT systems using			
-		rs to read sensor data an	d posting in cloud	d.
11. List of Experi				
· · · · · ·	MSP430 (CCStudio)			
Sub Task 1: Port prog				
Sub Task 2: Analog to	o Digital Conversion u	ising MSP430 microcol	ntroller.	
Sub Task 3: LCD disp	play of characters and	numbers.		
Sub Task 4: Timer				
Ŭ	ARM (Keil and energy			
Sub Task 1: Periphera	1 0 0	M7 board.		
Sub Task 2: PWM get				
Ŭ	U	iguration ,HTTP and M	QTT.	
	ireless transmission us		. 11	
	0 0	with MSP 430 microcon	troller using SPI/	UART.
Sub Task 2: Program	ming sleep and wake u	ip mode of MSP 430		
IoT systems	mary minusing D-(1			
Working with Raspbe	erry prusing Python.			
Arduino platform	ouroo alouda			
Working with open so	burce clouds.			

Wireless Sensor Networks and IoT

1. Name of the Depa	rtment- Computer S	Science & Engineering			
2. Course Name	Wireless Sensor	L	Т	P	
	Networks and IoT				
3. Course Code		3	0	0	
4. Type of Course (us	e tick mark)	Core ()	PE (✓)	OE ()	I
5. Pre-requisite (if		6. Frequency (use	Even Odd		Every
any)		tick marks)	$() \qquad (\sqrt{)}$	Sem ()	Sem ()
	Lectures, Tutorials,	Practical (assuming 12			
Lectures = 36		Tutorials = 0	Practical = 0)	
8. Course Descriptio				1 1 2	
		se the students to the centra	al elements in th	e design of	
communication protoco	ls for the WSNs.				
•					
9. Learning Object	ivos:				
. Learning Object	1763.				
1 Talianair (les destau les1 - 1 ·		······································		WONT
		n analyzing the specific rec	-	pplications in	WOINS
e e.		ing, and transmission capa	•		
		networks, design, impleme			
-		er management, sensor dat		• •	-
3. To associate, har	dware platforms and so	oftware frameworks used to	o realize dynami	c Wireless ser	nsor
network					
10. Course Outcome	s (COs):				
The students w	vill be able to:-				
1. Assess the applic	ability and limitations	of communication protoco	ls for a real time	e WSN applica	ation.
2. Confirms the beh	avior of mobile ad hoc	networks (MANETs)and	correlates the in	frastructure b	based
networks.					
	erstating the routing pro	ptocols function and their i	mplications on a	lata transmissi	ion delay
and bandwidth.	istuding the routing pro				ion actuy
	networks with an atter	npt to reduce issue of broad	deast and floodi	ng techniques	
		prove existing or to develo			
	priate argorithins to m	prove existing of to develo	ip new whereas	sensor networ	ĸ
applications.				6 (1 1	
•	e 1	ments, suitable algorithms,	and the state-of	I-the-art cloud	platiorii
to meet the industri	•				11.0
•		vare & software for wireles	ss sensor netwo	rks in day to d	ay life
11. Unit wise detaile					
Unit-1	Number of	Network for embedded s	ystems		
	lectures = 9				
R\$232 R\$485 SPL 120	~ ~				
10252, 100+05, 011, 120	C, CAN, LIN, FLEXRA	AY.			
		AY. •otocols: Bluetooth, Zigbe	e, Wifi, MiWi,	Nrf24, Wirel	ess LAN
			ee, Wifi, MiWi,	Nrf24, Wirel	ess LAN
Embedded wireless co &PAN, UWB	ommunication and Pr	otocols: Bluetooth, Zigbe			
Embedded wireless co					

Characteristic and challenges, WSN vs Adhoc Networks, Sensor node architecture, Physical layer and transceiver design considerations in WSNs, Energy usage profile, Choice of modulation scheme, Dynamic modulation scaling, Antenna considerations.

Fundamentals of MAC protocols - Low duty cycle protocols and wakeup concepts, Contention Based protocols, Schedule-based protocols - SMAC – BMAC, Traffic-adaptive medium access protocol (TRAMA), The IEEE 802.15.4 MAC protocol.

Unit – 3	Number of	Sensor Network Architecture
	lectures = 9	

Data Dissemination, Flooding and Gossiping-Data gathering Sensor Network Scenarios, Optimization Goals and Figures of Merit, Design Principles for WSNs- Gateway Concepts, Need for gateway, WSN and Internet Communication, WSN Tunneling

Unit – 4	Number of	IP based WSN & Tiny OS
	lectures = 9	

Circuit switching, packet switching, concept of IPV4, IPV6, 6LOWPAN and IP, IP based WSN, 6LOWPAN based WSN.

Tiny OS: Tiny OS for WSN and IoT, M2M communication, Alljoyn network

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

Text Book(s):

1. Holger Karl, Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks" 2011, 1 st ed., John Wiley & Sons, New Jersey.

2 Jun Zheng, Abbas Jamalipour, "Wireless Sensor Networks: A Networking Perspective", 2014, 1 st ed., Wiley-IEEE Press, USA.

Reference Book(s)

1. Waltenegus W. Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice", 2014, 1 st ed., John Wiley & Sons, New Jersey.

2 Ian F. Akyildiz, Mehmet Can Vuran, "Wireless Sensor Networks", 2011, 1 st ed., John Wiley & Sons, New Jersey.

3 Zach Shelby, Carsten Bormann, "6LoWPAN: The Wireless Embedded Internet", 2009, 1 st ed., John Wiley & Sons, New Jersey.

Signal Processing and Data Analytics

1. Name of the Dep	oartment- Compute	er Science & Engineeri	ng			
2. Course Name	Signal Processing	L	Т		Р	
	and Data Analytics					
3. Course Code		3	0		0	
4. Type of Course (use tick mark)	Core ()	PE(✓)		OE ()	
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	0	(√)	Sem ()	Sem ()
7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester)						
Lectures = 36						
8 Course Descript	ion					

8. Course Description

This course is aimed to identify and expose the students to the central elements in the design of communication protocols for the WSNs.

9. Learning Objectives:

1. To introduce the concepts of discrete time signal processing and the characterization of random signals.

2. To present the basic theory of modeling the signals and the methods of estimating the unknowns using prediction filters

3. To provide a comprehensive understanding on applying FFT, DCT, and wavelet techniques for extracting the signal features.

4. To provide an overview of analysing big data using intelligent techniques and an in-depth introduction to two main areas of Machine Learning: supervised and unsupervised.

11. Course Outcomes (COs):

The students will be able to:-

1. Apply FFT, DCT wavelet techniques for extracting the features from the big data

2. Develop algorithms that can be used to analyse the real-world univariate and multivariate time series data. 3.

Design an approach to leverage data using the steps in the machine learning process.

4. Understand and apply both supervised and unsupervised classification methods to detect and characterize patterns in real-world data.

5. Estimate the signal parameters and identify the model using ARMA models and prediction filters.

6. Understand the methods of visualization and analysis of big data.

12. Unit wise detailed content						
Unit-1	Number	r of	Discrete Random Signal Processing			
	lectures	= 9				
Random Pr	ocesses, Ensemble	Average,	Gaussian Process, Multi variate Gaussian Process, Stationary proc	cess,		
Autocorrelat	tion, Auto Covarian	ce, Ergodic	city, White noise, Power Spectrum, Filtering of Random Process			
Unit – 2	Numbe	r of	Signal Modeling & Feature extraction			
	lectures	-				
ARMA, AR	, MA Models. Wier	er filter, Li	inear prediction, Kalman Filter.			
Feature extra	action: FFT, Power	spectrum, l	DCT, filter banks, Wavelet, Wavelet Packets, Cepstrum			
Unit – 3	Number of	Time series	es analysis			
	ectures = 9					

Basic analysis, Univariate time series analysis, Multivariate time series analysis, non stationary time series.

Unit – 4	Number of	Machine learning & Big Data Analytics
	lectures = 9	

Machine learning: Supervised learning, generative algorithms, Support Vector machines, Unsupervised learning, K means clustering, Neural network (SOM, ART), Expectation maximization.

Big Data Analytics: Introduction Big data analytics, visualization and data exploration, basic and intermediate analysis, linear and logistic regression, decision tree.

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

Text Book(s)

1. J. G. Proakis, DG. Manolakis and D. Sharma, "Digital signal processing principles, algorithms and applications", 2012, 4th ed., Person education, USA

2. Sophocles J. Orfanidis, "Inroduction to signal Processing" 2010, 2nd ed., Prentice Hall, New Delhi India.

Reference Books

1. Oppenhiem V. A.V and Schaffer R. W, "Discrete- time signal Processing", 2014, 3 rd ed., Prentice Hall,. New Delhi, India

2. Thomas A. Runkler, "Data Analytics: Models and Algorithms for Intelligent Data Analysis", 2016, 2 nd ed., Springer Verlag, UK

3. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective" 2012, 1 st ed., MIT Press, USA

Signal Processing and Data Analytics Lab

1. Name of the Dep	partment- Computer S	Science & Engineering	5				
2. Course	Signal Processing and	L	Т	Р			
Name	Data Analytics Lab						
	2 000 1 1101 j 0100 200						
3. Course		0	0	2			
Code							
4. Type of Cou	rse (use tick mark)	Core ()	$\mathbf{PE}(\sqrt{2})$	OE ()			
5. Pre-requisite	0	6. Frequency	Even Odd	Either Every			
(if any)	e	(use tick marks)		5			
(II ally)		(use tick marks)	0 (1)	Sem () Sem ()			
7. Total Numb	er of Lectures, Tutoria	als. Practical (assumir	g 12 weeks of on	e semester)			
Lectures $= 0$, , , , , , , , , , , , , , , , , , , ,	Tutorials = 0	$\frac{12}{\text{Practical}} = 24$				
			11400004 21				
8. Course Desc	cription: This course is	aimed to identify and e	xpose the students	s to the central			
	gn of communication pr	-					
9. Learning objectiv	ves:						
•••	he concepts of discrete tin	ne signal processing and	he characterization	of random signals.			
	basic theory of modeling			-			
prediction filters				_			
3. To provide a c	omprehensive understand	ing on applying FFT, DC	T, and wavelet tech	niques for			
extracting the sig	gnal features.			_			
4. To provide an	overview of analysing big	g data using intelligent tea	chniques and an in-o	lepth introduction			
to two main areas	s of Machine Learning: su	pervised and unsupervise	ed.				
9. Course Outo	comes (COs):						
The students	s will be able to:-						
1. Apply FFT, D	CT wavelet techniques for	r extracting the features f	rom the big data				
2. Develop algori	ithms that can be used to a	analyse the real-world un	ivariate and multiva	riate time series			
data.							
3. Design an appr	roach to leverage data usi	ng the steps in the machin	ne learning process.				
4. Understand and	d apply both supervised a	nd unsupervised classific	ation methods to de	tect and			
characterize patte	erns in real-world data.						
5. Estimate the si	ignal parameters and ident	tify the model using ARM	IA models and pred	liction filters.			
6. Understand the	e methods of visualization	and analysis of big data.					
10. List of Expe	riments						
1. Design and impler	mentation of Wiener filt	er and Kalman filter.					
U	mentation of filter bank		1 · 1				
	mentation of Principal (
1	D). 4. Design an expert	2 1 11	` 1	U ,			
-	face recognition). 5. C			ge campus and			
develop a data analy	tic system to determine	the average, trend and	prediction				

Micro Systems & Hybrid Technology

1. Name of the Department- Computer Science & Engineering							
2. Course N	Name	Micro Systems &	L	Т		Р	
	(Hybrid Technolog	у				
:	_					-	
3. Course C			3	0 0			
		ise tick mark)	Core ()	PE(✓)		OE ()	· _
5. Pre-requ	isite (if		6. Frequency (use	Even	Odd	Either	Every
any) 7 Total Nu	mbar of	Lastura Tutar	tick marks)	() 12 week	$(\sqrt{)}$	Sem ()	Sem ()
7.10tal Nu Lectures = 1		Lectures, Tutori	als, Practical (assuming Tutorials = 0	Practic		semester)	
8. Course D		on•	1 utorials = 0	Fractic	a = 0		
			undamental concepts of N	IEMS be	sed senso	re and actuators	
	is annec	t to introduce the i	undamental concepts of N		iseu seliso	is and actualors.	
9.Learning (Obiectiv	es:					
	objectiv	05.					
1. To ao	1. To acquaint the students with various materials and material properties for Microsystem designing.						
-		and analysis softwa	-	e	1	*	
3. Enha	ancing the	e basics of thick film	and hybrid technologies for	r sensor d	levelopmer	nt.	
10. Course	10. Course Outcomes (COs):						
The	students	will be able to:-					
1. Identif	fy and un	derstand the fundam	ental concepts and backgro	und of MI	EMS and M	Aicrosystems	
2. Famili	ar with th	ne basics of various	sensors and actuators.				
3. The stu	udents w	ere acquainted with	various materials for Micro	system de	signing.		
4. Detern	nine and	compare the scaling	effects in miniaturizing dev	vices.			
5. Recog	nize and	interpret various mi	cromachining techniques ar	d design,	analysis ar	nd applications of var	ious
MEMS d	levices m	icromachining tools	and techniques				
6. Acqua	inted wit	h thick film and hyb	rid technologies for sensor	developm	ent.		
			abrication knowledge for de	eveloping	various MI	EMS devices.	
11. Unit wis	se detail						
Unit-1		Number of	Introduction to MEMS an	d Microsy	vstems		
		lectures = 9					
			on, Benefits of Microsyste	ms, Typio	cal MEMS	and Microsystems	products,
Evolution of	Micro fa	brication and Applic	eations.				
Unit – 2		Number of	Introduction to Sensors an	d Actuato	ors		
	lectures = 9						
	Various domains and classification of transducers: electrostatic, piezoelectric, thermal. Sensing principles: electrostatic,						
			Micro actuators, Design o	f Micro	accelerome	eters, Engineering S	cience for
Microsystem	design a	nd fabrication.					
TL-24 2 N	T 1	- C b C					
	Number		hining Technologies				
le	ectures =	= 9					

Overview of silicon processes techniques, Photolithography, Ion Implantation, Diffusion, Chemical Vapor Deposition, Physical vapor Deposition, Epitaxy, Etching, Bulk micromachining, Surface Micromachining, LIGA and other techniques.

MEMS and micro systems applications: Details of application in actual systems, introduction to RF- MEMS, MOEMS, future of smart structures and MEMS leading to NEMS. Packaging, test and calibration of MEMS

Unit – 4 Number of Hybrid Technology lectures = 9

Thick-film and hybrid technology in sensor production. Basic materials, components, manufacturing Screen manufacturing, Screen printing, Parameters, Comparison: thick- vs. thin film technology Structure dimensions, Assembly and packaging Surface mount technology (SMT) Active and passive devices (SMD), Connection technologies, Packaging.

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

Text Book(s)

1. G.K.Ananthasuresh, K J Vinoy, S Gopalakrishnan, KN Bhatt, V K Aatre," Micro and smart systems", 2012, 1st ed., Wiley, New York.

2. Tai-Ran Hsu, "MEMS & Microsystem, Design and Manufacture", 2017, 1st ed., McGraw Hill India, New Delhi.

Reference Books

1. Mahalick NP, "MEMS", 2017, 1st ed., Tata McGraw Hill, New Delhi

2 Wolfgang Menz, Jürgen Mohr, Oliver Paul, "Microsystem Technology", 2011, 2nd ed., Wiley, New York.

3 Banks H.T. Smith R.C. and Wang Y.Smart, 'Material Structures – Modeling, Estimation and Control', 2011, 1st ed., John Wiley & Sons, NewYork.

4 Massood Tabib – Arar, 'Microactuators – Electrical, Magnetic Thermal, Optical, Mechanical, Chemical and Smart structures', 2014, 1st ed., Kluwer Academic publishers, New York .

Signal Processing and Data Analytics Lab

1. Name of th	1. Name of the Department- Computer Science & Engineering						
2. Course Signal Processing and			L	Т		Р	
NameData Analytics Lab							
		2					
3. Course			0	0			2
Code Type of Course (use tick mark)							
4. Type of Course (use tick mark)			Core ()	PE (v	()	Ol	E ()
5. Pre-requisite			6. Frequency	Even (Odd	Either	Every
(if any)	115110		(use tick marks)		(√)		•
(II ally)			(use tiek marks)	0 (Sem ()	Sem ()
7. Total N	imber	• • of Lectures, Tutor	ials. Practical (assumir	ng 12 week	s of one	e semeste	er)
7.Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester)Lectures = 0Tutorials = 0Practical = 24							
				Tucticui			
Course Descr	ption	This course is aime	d to introduce the fundat	nental cond	cepts of	MEMS I	based
sensors and ac	-				1		
8.							
Learning obje	tives:						
		fundamental concepts	of MEMS based sensors a	nd actuators	5.		
2. To acqua	nt the	students with various r	naterials and material prop	erties for M	licrosyste	em design	ing.
-			ng of various micromaching		-	-	-
students to	lesign,	simulation and analysi	is software.	0		•	
	-	•	hybrid technologies for se	nsor develop	pment.		
	-	mes (COs):			-		
The stu	dents	will be able to:-					
1. Identify a	nd und	erstand the fundament	al concepts and backgroun	d of MEMS	and Mie	crosystem	s
2. Familiar	with the	e basics of various sense	sors and actuators.				
3. The stude	nts wei	re acquainted with var	ious materials for Microsy	stem designi	ing.		
4. Determir	e and c	ompare the scaling eff	ects in miniaturizing devic	es.			
5. Recogniz	e and in	nterpret various microi	machining techniques and	design, anal	ysis and	applicatio	ons of
various ME	MS dev	vices micromachining	tools and techniques				
6. Acquaint	ed with	thick film and hybrid	technologies for sensor de	velopment.			
7. Incorpora	te simt	lation and micro-fabri	cation knowledge for deve	loping varie	ous MEN	AS device	s.
10. List of	Experi	ments					
Design and Sim	ulatior	n of MEMS Capacita	ince based Acceleromete	er:			
In this topic, St	idents	need to design a cap	acitive accelerometer that	at has a full	l scale	Measure	ment
range of ± 10 g	The a	ccelerometer may be	designed using a closed	l loop or an	open-le	oop. You	need to
have reasonable	over n	range protection in y	our device.				
Specification:							
Measurement ra	U	•					
Output capacita	nce: at	least tens of fF level	l				
			account parasitic capacit				
(a) Static analys	es: Ga	p vs. acceleration Ca	apacitance (or differentia	l capacitan	ice) vs. a	accelerati	ion
(identify sensiti	vity [F	[/g])					
(b) Dynamic an	alyses:	Your device's respo	onse on vibration.				

2. Piezoresistive barometric pressure sensor: In this topic, Students need to design a piezoresistive pressure sensor that has the measurement range of 0 - 1.1 bar. You need to have a reasonable over range protection in your device.

Specification:

Measurement range: 0 -1.1 bar.

Device simulation results:

(i) Strain in the piezoresistor vs. pressure

(ii) Resistance vs. pressure

(iii) Voltage output vs. pressure for Wheatstone bridge circuit output.

Circuit integration issues:

Temperature compensation circuit design

Cloud and Fog Computing

1. Name of the Dep	partment- Comput	er Science & Engineer	ing			
2. Course Name	Cloud and Fog	L	Т		Р	
	Computing					
3. Course Code		3	0		0	
4. Type of Course (use tick mark)	Core ()	$\frac{\mathbf{PE}(\mathbf{V})}{\mathbf{PE}(\mathbf{V})} = \frac{\mathbf{OE}(\mathbf{V})}{\mathbf{OE}(\mathbf{V})}$			
5. Pre-requisite (if		6. Frequency (use		Odd	Either	Every
any)		tick marks)	()	()	Sem ()	Sem ()
	f Lectures, Tutoria	lls, Practical (assumin		of one :	V	
Lectures = 36	,	Tutorials = 0	Practical		,	
8. Course Descript	ion:	1				
This course is aimed	d to Introduce cloud	computing and enabling to	chnologies			
9.Learning Objectiv	ves:					
1 Explore the ne	ed for fog and edge co	omputation				
-		sor data and to perform fu	rther data and	alytics		
10. Course Outcon	0 0			arytres		
	course student will be	able to				
1. Deploy their data in the cloud for simple applications						
2. Apply the analytics in cloud to extract information						
** *	•					
	l deploy fog data proc					
-	-	h fog computation layers				
	d implement edge cor					
	analytics using pythor					
		g in commercial clouds				
11. Unit wise detai		1				
Unit-1	Number of lectures = 9	Cloud Computing basics	and enabling	technol	logies	
Cloud Computing bas	sics and enabling tech	nologies: Basics of cloud	computing-l	Need for	r clouds- concepts a	and models:
Roles and boundarie	es – Cloud character	istics – Cloud delivery	models - C	loud de	ployment models.	Broadband
Networks and Internet	et Architecture – Data	Center Technology - Vir	tualization To	echnolog	gy.	
Cloud Virtualisation:	Server oriented - Vi	rtual Machines (IaaS), M	odern Server	less Cor	figurations- Functi	ons/ (PaaS)
Lambda functions -	App, Biz function,	logics, data ingestion (e	elasticity, sca	alability	– on demand) D	B services,
Analytics services (Sa	aaS).					
Unit – 2	Number of lectures = 9	Cloud Application Devel	opment in Py	vthon		
Python for Cloud: Ar		- Google Cloud – Windov	vs Azure Pvt	hon for	MapReduce	
•		I IoT: Cloud Service man			A	-service and
		anizing cloud architecture	.	,		
Unit – 3 Number lectures	= 9	lge computing				
. .		ocessing layers - Secur			Č.	<u> </u>
v v		ess sensors and actuators	Ŭ,	, Archit	ecture Harmonizati	on Betweer
		tworks, Fog applications.				
Need for edge comp	outation-Edge compu	ting architectures, Device	registration,	Remot	te diagnostics,SW	update, Geo

distributed computing-concept of cloud orchestration, Edge Networks (Low bandwidth networks/ Security/ protcols), WAN vs Low bandwidth networks

Unit – 4	Number of	Overview of Edge Data Analytics tools
	lectures = 9	

Thick-film and hybrid technology in sensor production. Basic materials, components, manufacturing Screen manufacturing, Screen printing, Parameters, Comparison: thick- vs. thin film technology Structure dimensions, Assembly and packaging Surface mount technology (SMT) Active and passive devices (SMD), Connection technologies, Packaging.

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

Text Books:

1. Thomas Erl, Zaigham Mahmood, and Ricardo Puttini, "Cloud Computing: Concepts, Technology & Architecture", Arcitura Education, 2013

Reference Books

1. Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", CRC Press, 2012.

2. S.-C. Hung et al.: Architecture Harmonization Between Cloud RANs and Fog Networks, IEEE Access: The Journal for rapid open access publishing, Vol.3, pp: 3019 – 3034, 2015.

Cloud and Fog Computing Lab

1. Name of the L	Department- Computer	Science & Engineering	g	
2. Course	Cloud and Fog	L	T	Р
Name	ComputingLab			
3. Course		0	0	2
Code				
4. Type of Co	ourse (use tick mark)	Core ()	$\mathbf{PE}(\sqrt{2})$	OE ()
	•.			
5. Pre-requis	site	6. Frequency	Even Odd ()	Either Every
(if any)		(use tick marks)	(1)	Sem () Sem ()
	nber of Lectures, Tutori			e semester)
Lectures = 0		Tutorials = 0	Practical = 24	
8. Course De	escription: This course is	aimed to Introduce clou	d computing and an	abling
technologies	escription. This course is		a computing and en	aonng
9.Learning object	tives·			
• •	oud computing and enablin	a technologies		
	need for fog and edge com			
	nowledge to log the sensor		or data analytics	
10.Course Outco	· · · · ·		ci data analytics	
	he course student will be at	le to		
	r data in the cloud for simpl			
	nalytics in cloud to extract i			
	and deploy fog data process			
	nsor data to cloud through f			
-	and implement edge compu			
	ge analytics using python ar			
	a pushing and processing in			
11. List of Ex	<u> </u>	commercial clouds		
	Microsoft Azure/IBM Bl	nomix		
Language: Python		uenna		
1. Pushing docum				
2. Pushing Images				
3. Mini Weather S				
4. Image analytics				
5. Python Scikit le				
6. Tensor flow	Jai 11			
0. TCHSOI HOW				

Data Science

Information Visualization

	· · · · ·	ter Science & Engineer	<u> </u>		1	
2. Course Name	Information	L	Τ		P	
	Visualization					
3. Course Code		3	0		0	
. Type of Course (u	se tick mark)	Core ()	PE(✓)		OE ()	
5. Pre-requisite (if	, , , , , , , , , , , , , , , , , , , ,	6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	0	(✔)	Sem ()	Sem ()
7. Total Number of	Lectures, Tutoria	als, Practical (assuming	g 12 weeks	of one	semester)	
Lectures = 36		Tutorials = 0	Practica	$\mathbf{l} = 0$		
8. Course Descript	ion		·			
This course is aimed	l to understand the v	arious types of data, apply	and evaluat	te the pri	nciples of data v	isualization.
. Learning Object	ctives:					
•		techniques to a problem a		iated data	aset.	
	~ ~	te effective visualizations.		1		
		ht from the massive datase	-	alization		
		lashboard to support decision of the second structure insight using variation of the second structure in the second structure is a second structure is a second structure in the second structure in the second structure is a second structure in the second structure in the second structure is a second structure in the	U U	tion tool	0	
10. Course Outcom		i better misight using vario	Jus visualiza		8.	
	course student will b	e able to				
		iated visualization mechan	isms			
•	• •	visualization techniques to		able visu	alization for real	life
applications.		1				
	lyse multidimension	al data and hierarchical da	ta for visual	ization.		
	riate data analysis a					
5. Apply the visua	lization guidelines f	or effective information vi	sualization.			
6. Demonstrate th	e concept of visualiz	ation through dashboard c	reation for v	various aj	oplications.	
		given real world problems	and produc	e meanin	gful visualizatio	n.
11. Unit wise detail	ed content					
Unit-1	Number of	Introduction to Data Visu	alization			
	lectures = 9					
	ualization - Data Ab	straction - Task Abstracti	on - Analys	is: Four	Levels for Valic	lation, Human
Visual Perception						
Unit – 2	Number of	Visualization Techniques				
	lectures = 9					
.	•	lization techniques – matri				
visualization Techniq	ues for Trees, Graph	s, and Networks, Multidin	nensional da	ita		
Unit – 3 Number	of Visual An	alysis of data from various	domains			
lectures :		aryons of data from various	aomamo			
		data visualization and case	e studies			
	•	visualization, and case stu				

Unit – 4	Number of	Designing Effective Visualizations
	lectures = 9	

Designing Effective Visualizations: Guidelines for designing successful visualizations, Data visualization dos and don'ts

Dashboard Creation and Visual Story Telling: Dashboard Design principles, Effective Dashboard Display Media, Dashboard creation using visualization tools for the use cases: Finance- marketing-insurance-healthcare etc.,

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended Reference Books

1. Tamara Munzer, "Visualization Analysis and Design", CRC Press, 2014.

2.Stephen Few, "Now You See It", Analytics Press, 2009.

3. Stephen Few, "Information Dashboard Design: the effective visual communication of data", Oreilly, 2006.

4. Matthew O. Ward, Georges Grinstein, Daniel Keim "Interactive Data Visualization: Foundations, Techniques, and Applications", CRC Press, Second Edition, 2015.

5. Dr. Chun-hauh Chen, W.K. Hardle, A. Unwin, "Handbook of Data Visualization", Springer publication, 2008.

6. Ben Fry, "Visualizing Data", O'Reilly Media, 2008 7. Winston Chang, "R Graphics Cookbook", O'Reilly, 2012

		n Visualization Lab				
	epartment- Computer S			_	I -	_
	Information visualization	L	Г	[P
Name	Lab					
3. Course		0	0)		2
Code		, i i i i i i i i i i i i i i i i i i i				_
4. Type of Co	urse (use tick mark)	Core ()	PE((√)	OI	E ()
5. Pre-requisit	te	6. Frequency	Even	Odd	Either	Every
(if any)		(use tick marks)	0	()	Sem ()	Sem ()
			V	()	Sem ()	Sem ()
7. Total Numb	ber of Lectures, Tutoria	ls, Practical (assumin	ng 12 wee	ks of on	e semeste	er)
Lectures = 0	ŗ	Futorials = 0	Practica	al = 24		
~ ~ ~						
	ption: This course is ain	ned to understand the va	rious types	s of data,	apply and	evaluate
	data visualization.					
8. 9. Learning object	iwog.					
00		ashniques to a problem	and its asso	opietad de	tocot	
-	kills to apply visualization t ctured approach to create ef		and its asso	Jerateu ua	ilasei.	
** *	to bring valuable insight fro		cina vicual	ization		
	to build visualization dashb		U U	iizatioii.		
	active visualization for bet		-	on tools.		
10. Course Outcon		6				
	e course student will be abl	e to				
1. Identify the da	ata types and its associated	visualization mechanism	ns.			
2. Apply the var	ious scalar and vector visua	alization techniques to cr	eate suitab	ole visuali	ization for	real life
applications.						
3. Handle and an	nalyse multidimensional da	ta and hierarchical data	for visualiz	ation.		
	variate data analysis and vi					
	ualization guidelines for ef					
	the concept of visualization	v				
	priate methods for the given	n real world problems an	d produce	meaningf	ul visualiz	zation.
11. List of Expe						
	e Mining and Clustering. KNN or Naïve Bayes Cl	assification				
	is using Clustering, Histo					
4. Time-series analysi	e	Stant and Heativitap				
	various massive dataset-	Finance-Healthcare- C	ensus –Ge	eospatial		
	Data analysis-visualizatio			r	,	
	n using web analytics	_				
	tegration in Table au usi	ng Hortonworks				
9. Google API with						
10. Visualizationus	0 0					
11. Visualization us	sing Zeppelin					

Web Intelligence and Big Data

1. Name of the Dep	oartment- Compute	er Science & Engineeri	ng			
2. Course Name	2. Course Name Web Intelligence		Т		P	
	and Big Data					
3. Course Code		3	0		0	
4. Type of Course (u	ıse tick mark)	Core ()	PE(✓)		OE ()	
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	0	(•	Sem ()	Sem ()
7. Total Number of	f Lectures, Tutoria	ls, Practical (assuming	12 week	s of one	semester)	
Lectures = 36		Tutorials = 0	Practic	al = 0		
8. Course Descript	ion	-				
This course is aimed	l to web-intelligence	e applications exploiting	big data	sources		
9. Learning Objective of		d web-intelligence appli	cations e	xnloiting	big data sources a	rising

The objective of this paper is to build web-intelligence applications exploiting big data sources arising social media using new big-data platforms based on the 'map-reduce' parallel programming paradigm.

10. Course Outcomes (COs):

At the end of the course student will be able to

- 1. Describe the IoT and Cloud architectures
- 2. Determine the right sensors and communication protocols to use in a particular IoT system.
- 3. Deploy Cloud Services using different cloud technologies.
- 4. Implement cloud computing elements such virtual machines, web apps, mobile services, etc.
- 5. Establish data migration techniques from IoT devices to the cloud.
- 6. Implement security features to protect data stored in the cloud.
- 7. Use visualisation techniques to show data generated from the IoT device.

	11. Unit v	vise detailed cont	ent					
	Unit-1 Number of		er of					
		lecture	s = 9	Introduction				
	Intr	oduction: Web Sca	ale AI and I	Big Data, Web Intelligence, Big Data Look: Indexing- Index creation,				
	Ranking,	Page Rank Search	ning- Enter	orise search, Searching structured data, Object Search, Locality				
	Sensitive	Hashing and Men	nory.					
		0						
	Unit – 2	Numbe	er of	Listen, Load and Programming				
		lecture	s = 9					
	List	en: Streams, Infor	mation and	Language, Analyzing Sentiment and Intent				
	Loa	d: Databases and t	heir Evolut	ion, Big data Technology and Trends.				
	Pro	gramming: Map-R	educe, Map	p-Reduce applications and its efficiency, Big-Table and HBase				
	Unit – 3	Number of	Learn and	d Connect				
		lectures = 9						
	Lea	rn: Classification,	Clustering,	and Mining, Information Extraction				
	Cor	nnect: Reasoning: 1	Logic and it	ts Limits, Dealing with Uncertainty.				
_			-					
	Unit – 4	Number of	Predict D	ata Analysis				
		lectures = 9						
			•					

Predict: Forecasting, Neural Models, Deep Learning, and Research Topics. Data Analysis: Regression and Feature Selection

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

Text Book:

1. The Intelligent Web: Search, Smart Algorithms and Big Data published by Oxford University Press, UK, in November 2013, authored by Dr. Gautam Shroff.

References Books:

1. Mining Massive Datasets by J.D. Ullman and A. Rajaraman (Cambridge University Press, UK 2012)

2. Introduction to Information Retrieval by Christopher Manning, Prabhakar Raghavan and Hinrich Schutze (Cambridge University Press, UK 2008).

Bigdata Frameworks

1. Name of the Dep	artment- Comput	ter Science & Engineer	ing			
2. Course Name	Bigdata	L	Т		P	
	Frameworks					
3. Course Code		3	0		0	
4. Type of Course (u	se tick mark)	Core ()	PE(✓)		OE ()	
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	0	(✔)	Sem ()	Sem ()
7. Total Number of	Lectures, Tutoria	als, Practical (assuming	g 12 weeł	ks of one	semester)	
Lectures = 36Tutorials = 0Practical = 0						
8. Course Descripti	on					

This course is aimed to understand the need of Big Data, challenges and different analytical architectures

1. Learning Objectives:

- 2.Installation and understanding of Hadoop Architecture and its ecosystems
- 3. Processing of Big Data with Advanced architectures like Spark.
- 4.Describe graphs and streaming data in Spark

10. Course Outcomes (COs):

At the end of the course student will be able to

- 1.Discuss the challenges and their solutions in Big Data
- 2. Understand and work on Hadoop Framework and eco systems.
- 3. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework.
- 4. Demonstrate spark programming with different programming languages.
- 5.Demonstrate the graph algorithms and live streaming data in Spark
- 6. Lab: analyse and implement different frame work tools by taking sample data sets.
- 7.Project: illustrate and implement the concepts by taking an application problem.

11. Unit wise detailed content							
Unit-1	Number of	Introduction To Big Data					
	lectures = 9						
Data Storage a	Data Storage and Analysis - Characteristics of Big Data – Big Data Analytics - Typical Analytical Architecture –						

Requirement for new analytical architecture – Challenges in Big Data Analytics – Need of big data frameworks

Unit – 2	Number	r of	Hadoop Framework & Ecosystem					
	lectures	= 9						
Hadoop –	Hadoop - Requirement of Hadoop Framework - Design principle of Hadoop - Comparison with other system - Hadoop							
Componen	nts – Hadoop 1 vs H	adoop 2 -	Hadoop Daemon's - HDFS Commands - Map Reduce Programming: I/O					
formats, N	lap side join, Reduce	Side Join, S	Secondary sorting, Pipelining MapReduce jobs					
Hadoop E	cosystem: Introductio	on to Hado	op ecosystem technologies: Serialization: AVRO, Co-ordination: Zookeeper,					
Databases	: HBase, Hive, Scripti	ng languag	e: Pig, Streaming: Flink, Storm					
Unit – 3	Number of	Spark Fran	nework					
	lectures = 9							
Introductio	on to GPU Computin	g, CUDA	Programming Model, CUDA API, Simple Matrix, Multiplication in CUDA,					
CUDA Memory Model, Shared Memory Matrix Multiplication, Additional CUDA API Features.								
Data Anal	ysis with Spark Shell:	Writing Sp	park Application - Spark Programming in Scala, Python, R, Java - Application					
Execution								

Unit – 4	Number of	Spark SQL and GraphX						
	lectures = 9							
SQL Cont	SQL Context – Importing and Saving data – Data frames – using SQL – GraphX overview – Creating Graph –							

Graph Algorithms.

Spark Streaming: Overview – Errors and Recovery – Streaming Source – Streaming live data with spark

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

Reference Books

1. Mike Frampton, "Mastering Apache Spark", Packt Publishing, 2015.

2. TomWhite, "Hadoop: The Definitive Guide", O'Reilly, 4th Edition, 2015.

3. NickPentreath,MachineLearningwithSpark,PacktPublishing,2015.

4. Mohammed Guller, Big Data Analytics with Spark, Apress,2015 5. Donald Miner, Adam Shook, "Map Reduce Design Pattern", O'Reilly, 2012

2.Course NameBigdata Frameworks Lab Image: Section 2Image: Section 2Image: Section 23.Course Code0024.Type of Course (use tick mark)Core () $PE()$ OE ()5.Pre-requisite (if any)6.Frequency (use tick marks)Even ()Odd ($$)Either Sem ()Every Sem ()7.Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester)Sem ()Sem ()1.Tutorials = 0Practical = 24Practical = 248.Course Description:This course is aimed to understand the need of Big Data, challenges and different analytical architecturesLearning objectives: 1. Installation and understanding of Hadoop Architecture and its ecosystems 2. Processing of Big Data with Advanced architectures like Spark. 3. Describe graphs and streaming data in SparkImage: Section 2		Bigdat	a Frameworks Lab		
Name 0 0 2 Code Type of Course (use tick mark) Core () $PE()$ $OE()$ 5. Pre-requisite 6. Frequency Even Odd Either Every (if any) 6. Frequency Even Odd Either Every 7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester) Lectures = 0 Tutorials = 0 Practical = 24 8. Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures I.Installation and understanding of Hadoop Architecture and its ecosystems 2.Processing of Big Data with Advanced architectures like Spark. 3.Describe graphs and streaming data in Spark 9. Course Outcomes (COS): At the end of the course student will be able to 1.Discuss the challenges and their solutions in Big Data 2.Understand and work on Hadoop Framework and eco systems. 3.Denonstrate the graph algorithms and live streaming data in Spark 9. Course outcomes (COS): At the end of the course student will be able to 1.Discuss the challenges and their solutions in Big Data 1. Denonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark <td< th=""><th>1. Name of the</th><th>Department- Computer</th><th>Science & Engineering</th><th>5</th><th></th></td<>	1. Name of the	Department- Computer	Science & Engineering	5	
3. Course Code 0 2 4. Type of Course (use tick mark) Core () PE(√) OE () 5. Pre-requisite (if any) 6. Frequency (use tick marks) Even () Odd (√) Either Sem () Every Sem () 7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester) Lectures = 0 Practical = 24 8. Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures Image: Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures Image: Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures Image: Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures 9. Course Outcomes (COS): At the end of the course student will be able to 1.Discuss the challenges and their solutions in Big Data 2.Understand and work on Hadoop Framework and eco systems. 3. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7.Project: illustrate and implement the concepts by taking sample data sets. 7.Project: illustrate and implement the concepts by taking sample data se		Bigdata Frameworks La	b L	Т	P
Code Vertical Core () $PE(\sqrt{)}$ OE () 5. Pre-requisite (if any) 6. Frequency (use tick marks) 0 $(\sqrt{)}$ Either Every () 7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester) Image: Partical active context of the semester of the semestation and understanding of Hadoop Architecture and its ecosystems 2.1 challenges and the semester of the semes	Name				
Code Vertical Core () $PE(\sqrt{)}$ OE () 5. Pre-requisite (if any) 6. Frequency (use tick marks) 0 $(\sqrt{)}$ Either Every () 7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester) Image: Partical active context of the semester of the semestation and understanding of Hadoop Architecture and its ecosystems 2.1 challenges and the semester of the semes					
4. Type of Course (use tick mark) Core () $PE(\sqrt{)}$ OE () 5. Pre-requisite (if any) 6. Frequency (use tick marks) Even () Odd ($\sqrt{0}$ Either Sem () Every Sem () 7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester) Lectures = 0 Practical = 24 8. Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures Practical = 24 8. Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures Installation and understanding of Hadoop Architecture and its ecosystems 2. 2. Processing of Big Data with Advanced architectures like Spark. 3. 3. Describe graphs and streaming data in Spark 9. Course Outcomes (COS): At the end of the course student will be able to 1. Discuss the challenges and their solutions in Big Data 2. Understand and work on Hadoop Framework and eco systems. 3. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5. Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement the concepts by taking an application problem. 10. List of Experiments 1. <th></th> <th></th> <th>0</th> <th>0</th> <th>2</th>			0	0	2
5. Pre-requisite (if any) 6. Frequency (use tick marks) Even () Odd (√) Either Sem () Every Sem () 7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester) Lectures = 0 Tutorials = 0 Practical = 24 8. Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures Learning objectives: 1. Installation and understanding of Hadoop Architecture and its ecosystems 2. Processing of Big Data with Advanced architectures like Spark. 3. Describe graphs and streaming data in Spark 9. Course Outcomes (COS): At the end of the course student will be able to 1. Discuss the challenges and their solutions in Big Data 2. Understand and work on Hadoop Framework and eco systems. 3. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5. Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7. Project: illustrate and implement the concepts by taking sample data sets. 7. Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments 1. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Run			~ ^		
(if any) (use tick marks) () (v) Sem () Sem () 7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester) Lectures = 0 Tutorials = 0 Practical = 24 8. Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures Big Data, challenges and different analytical architectures Learning objectives: 1.Installation and understanding of Hadoop Architecture and its ecosystems 2.Processing of Big Data with Advanced architectures like Spark. 3.Describe graphs and streaming data in Spark 9. Course Outcomes (COS): At the end of the course student will be able to 1.Discuss the challenges and their solutions in Big Data 2.Understand and work on Hadoop Framework and eco systems. 3.Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking an application problem. 10. 10. List of Experiments 1. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. S	4. Type of C	Course (use tick mark)	Core ()	PE(√)	OE ()
(if any) (use tick marks) () (v) Sem () Sem () 7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester) Lectures = 0 Tutorials = 0 Practical = 24 8. Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures Big Data, challenges and different analytical architectures Learning objectives: 1.Installation and understanding of Hadoop Architecture and its ecosystems 2.Processing of Big Data with Advanced architectures like Spark. 3.Describe graphs and streaming data in Spark 9. Course Outcomes (COS): At the end of the course student will be able to 1.Discuss the challenges and their solutions in Big Data 2.Understand and work on Hadoop Framework and eco systems. 3.Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking an application problem. 10. 10. List of Experiments 1. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. S	5. Pre-requi	isite	6. Frequency	Even Odd	Either Every
 7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester) Lectures = 0 Tutorials = 0 Practical = 24 8. Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures Learning objectives: 1. Installation and understanding of Hadoop Architecture and its ecosystems 2. Processing of Big Data with Advanced architectures like Spark. 3. Describe graphs and streaming data in Spark 9. Course Outcomes (COs): At the end of the course student will be able to 1. Discuss the challenges and their solutions in Big Data 2. Understand and work on Hadoop Framework and eco systems. 3. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5. Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7. Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments 11. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 	(if any)			$0 \qquad (\sqrt{)}$	
Lectures = 0 Tutorials = 0 Practical = 24 8. Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures Learning objectives: 1.Installation and understanding of Hadoop Architecture and its ecosystems 2. Processing of Big Data with Advanced architectures like Spark. 3.Describe graphs and streaming data in Spark 9. Course Outcomes (COS): At the end of the course student will be able to 1.Discuss the challenges and their solutions in Big Data 2.Understand and work on Hadoop Framework and eco systems. 3. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark 0. List of Experiments 1 1. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats – Nline, Multiline 3. Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix					
 8. Course Description: This course is aimed to understand the need of Big Data, challenges and different analytical architectures Learning objectives: I.Installation and understanding of Hadoop Architecture and its ecosystems Processing of Big Data with Advanced architectures like Spark. J.Describe graphs and streaming data in Spark 9. Course Outcomes (COs): At the end of the course student will be able to I.Discuss the challenges and their solutions in Big Data Understand and work on Hadoop Framework and eco systems. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. S.Demonstrate the graph algorithms and live streaming data in Spark Lab: analyse and implement different frame work tools by taking sample data sets. Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments HDFS Commends Map Reduce Program to show the need of Combiner Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 		mber of Lectures, Tutor			ne semester)
 different analytical architectures Learning objectives: I.Installation and understanding of Hadoop Architecture and its ecosystems Processing of Big Data with Advanced architectures like Spark. 3.Describe graphs and streaming data in Spark Course Outcomes (COs): At the end of the course student will be able to I.Discuss the challenges and their solutions in Big Data Understand and work on Hadoop Framework and eco systems. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. Demonstrate spark programming with different programming languages. Demonstrate spark programming with different programming languages. Demonstrate the graph algorithms and live streaming data in Spark Lab: analyse and implement different frame work tools by taking sample data sets. Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments HDFS Commends Map Reduce Program to show the need of Combiner Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline Sequence file Input/Output Formats Secondary sorting Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 	Lectures $= 0$		Tutorials = 0	Practical = 24	
 different analytical architectures Learning objectives: I.Installation and understanding of Hadoop Architecture and its ecosystems Processing of Big Data with Advanced architectures like Spark. 3.Describe graphs and streaming data in Spark Course Outcomes (COs): At the end of the course student will be able to I.Discuss the challenges and their solutions in Big Data Understand and work on Hadoop Framework and eco systems. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. Demonstrate spark programming with different programming languages. Demonstrate spark programming with different programming languages. Demonstrate the graph algorithms and live streaming data in Spark Lab: analyse and implement different frame work tools by taking sample data sets. Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments HDFS Commends Map Reduce Program to show the need of Combiner Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline Sequence file Input/Output Formats Secondary sorting Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 	8. Course D	Description: This course i	is aimed to understand th	e need of Big Dat	a challenges and
 Learning objectives: I.Installation and understanding of Hadoop Architecture and its ecosystems Processing of Big Data with Advanced architectures like Spark. 3.Describe graphs and streaming data in Spark Course Outcomes (COs): At the end of the course student will be able to 1.Discuss the challenges and their solutions in Big Data 2.Understand and work on Hadoop Framework and eco systems. 3. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7.Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 		_			a, enalienges una
 2.Processing of Big Data with Advanced architectures like Spark. 3.Describe graphs and streaming data in Spark 9. Course Outcomes (COs): At the end of the course student will be able to 1.Discuss the challenges and their solutions in Big Data 2.Understand and work on Hadoop Framework and eco systems. 3. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7.Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments 1. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 					
 3.Describe graphs and streaming data in Spark 9. Course Outcomes (COs): At the end of the course student will be able to 1.Discuss the challenges and their solutions in Big Data 2.Understand and work on Hadoop Framework and eco systems. 3. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7.Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments 1. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 	0 0		op Architecture and its eco	systems	
 9. Course Outcomes (COs): At the end of the course student will be able to 1.Discuss the challenges and their solutions in Big Data 2.Understand and work on Hadoop Framework and eco systems. 3. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7.Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments 1. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 	2.Processing	of Big Data with Advanced	architectures like Spark.	-	
 At the end of the course student will be able to Discuss the challenges and their solutions in Big Data Understand and work on Hadoop Framework and eco systems. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. Demonstrate spark programming with different programming languages. Demonstrate the graph algorithms and live streaming data in Spark Lab: analyse and implement different frame work tools by taking sample data sets. Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments HDFS Commends Map Reduce Program to show the need of Combiner Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline Sequence file Input/Output Formats Secondary sorting Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 	3.Describe gr	aphs and streaming data in	Spark		
 1.Discuss the challenges and their solutions in Big Data 2.Understand and work on Hadoop Framework and eco systems. 3. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7.Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments 1. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 	9. Course O)utcomes (COs):			
 2.Understand and work on Hadoop Framework and eco systems. 3. Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. 4. Demonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7.Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments 1. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 	At the end of	the course student will be a	ble to		
 Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework. Demonstrate spark programming with different programming languages. Demonstrate the graph algorithms and live streaming data in Spark Lab: analyse and implement different frame work tools by taking sample data sets. 7.Project: illustrate and implement the concepts by taking an application problem. List of Experiments HDFS Commends Map Reduce Program to show the need of Combiner Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline Sequence file Input/Output Formats Secondary sorting Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 	1.Discuss the	challenges and their solution	ons in Big Data		
 framework. 4. Demonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7.Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments 1. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 		-	-		
 4. Demonstrate spark programming with different programming languages. 5.Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7.Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments 1. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 	-	d Analyse the Big Data usir	ng Map-reduce programmin	ng in Both Hadoop	and Spark
 5.Demonstrate the graph algorithms and live streaming data in Spark 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7.Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments 1. HDFS Commends Map Reduce Program to show the need of Combiner 2. Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline 3. Sequence file Input/Output Formats Secondary sorting 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 			1.00 / 1		
 6. Lab: analyse and implement different frame work tools by taking sample data sets. 7.Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments HDFS Commends Map Reduce Program to show the need of Combiner Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline Sequence file Input/Output Formats Secondary sorting Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 					
 7.Project: illustrate and implement the concepts by taking an application problem. 10. List of Experiments HDFS Commends Map Reduce Program to show the need of Combiner Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline Sequence file Input/Output Formats Secondary sorting Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 			÷ .		
 List of Experiments HDFS Commends Map Reduce Program to show the need of Combiner Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline Sequence file Input/Output Formats Secondary sorting Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 		_		-	
 HDFS Commends Map Reduce Program to show the need of Combiner Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline Sequence file Input/Output Formats Secondary sorting Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 	•	<u> </u>	incepts by taking an application	ation problem.	
 Map Reduce I/O Formats-Text, key-value Map ReduceI/O Formats – Nline, Multiline Sequence file Input/Output Formats Secondary sorting Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 		•	m to show the need of Co	ombiner	
 Sequence file Input/Output Formats Secondary sorting Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 					iline
 4. Distributed Cache & Map Side Join, Reduce side Join Building and Running a Spark Application Word count in Hadoop and Spark Manipulating RDD 5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix 	L	, 2		,	
5. Inverted Indexing in Spark Sequence alignment problem in Spark Implementation of Matrix	-	1 1		and Running a Sp	oark Application
	Word count in H	adoop and Spark Manipu	lating RDD		
algorithms in Spark Spark Sql programming, Building Spark Streaming application		0 1 1	0 1 1	<u>.</u>	
	algorithms in Spa	ark Spark Sql programmi	ng, Building Spark Strea	ming application	

IoT and Cloud Computing

1. Name of the Department- Computer Science & Engineering									
2. Course Name	IoT and Cloud	L	Т		P				
	Computing								
3. Course Code		3	0		0				
4. Type of Course (u	ise tick mark)	Core ()	PE(✓)		OE ()				
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every			
any)		tick marks)	0	(√)	Sem ()	Sem ()			
7. Total Number of	7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester)								
Lectures = 36Tutorials = 0Practical = 0									
8. Course Descript	ion								

This course is aimed to provides an overview of the Internet of Things (IoT) and Cloud Computing concepts, infrastructures and capabilities.

9.Learning Objectives:

This will help students gain the necessary knowledge to construct IoT systems and use cloud services for processing and storage of the data produced by the IoT devices. Emphasis will be placed on the architecture and design of IoT systems, the different technologies (wireless/mobile/sensor) governing system implementation and the migration of the data to the Cloud for processing. This module aims to develop knowledge and critical understanding of the underlying principles of Cloud Computing and IoT systems, and the commercial and business implications of technical advances in this area. Students will gain practical experience in the development of Cloud-based IoT systems and exposure to appropriate hardware and software platforms that underpin such development.

10. Course Outcomes (COs):

At the end of the course student will be able to

- 1. Describe the IoT and Cloud architectures
- 2. Determine the right sensors and communication protocols to use in a particular IoT system.
- 3. Deploy Cloud Services using different cloud technologies.
- 4. Implement cloud computing elements such virtual machines, web apps, mobile services, etc.
- 5. Establish data migration techniques from IoT devices to the cloud.
- 6. Implement security features to protect data stored in the cloud.
- 7. Use visualisation techniques to show data generated from the IoT device.

11. Unit wise detailed content						
Unit-1 Number of		Introduction to IoT & Cloud				
	lectures = 9					
Trends of Co	mputing, Introducti	ion to IoT				
Unit – 2	Number of	Internet of Things				
	lectures = 9					
IoT Architec	tures, IoT Devices a	and Sensors, IoT communication and protocols.				
Unit – 3 Number	of Cloud Co	omputing				
lectures	= 9					

Cloud Computing Fundamentals, Cloud Computing Architectures, Cloud Types and Services, Virtualization and Resource Management.

Unit – 4	Number of	Application of IoT & Cloud
	lectures = 9	
IoT	and cloud integrati	on Application development and cloud processing. Security and Privacy for

IoT and cloud integration, Application development and cloud processing, Security and Privacy for IoT/Cloud Computing.

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

Reference Books

1. Botta A, De Donato W, Persico V, Pescapé A, "Integration of Cloud computing and Internet of Things: A survey", 2015.

 Name of the l Course 		IVI unu C	Cloud Computing Lab					
2. Course	-	·	Science & Engineerin	<u> </u>		-		
Name	IoT	and Cloud Computin Lab	g L		Τ]	Р	
3. Course Code			0	0			2	
	Course	e (use tick mark)	Core ()	PI	E(√)	OE ()		
5. Pre-requi (if any)	1		6. Frequency (use tick marks)	Even $()$	Odd ()	Either Sem ()	Every Sem ()	
7. Total Nur Lectures = 0	nber	of Lectures, Tutor	ials, Practical (assum Tutorials = 0		eks of on cal = 24	e semeste	er)	
				Truction	cui – 2 i			
		A	view of the Internet of Tl	nings (IoT)) and Cloud	d Computi	ng	
concepts, infras 9.Learning Obj		res and capabilities.						
architecture and design of IoT systems, the different technologies (wireless/mobile/sensor) governing system implementation and the migration of the data to the Cloud for processing. This module aims to develop knowledge and critical understanding of the underlying principles of Cloud Computing and IoT systems, and the commercial and business implications of technical advances in this area. Students will gain practical experience in the development of Cloud-based IoT systems and exposure to appropriate hardware and software platforms that underpin such development. 10. Course Outcomes (COs):								
Students will gain to appropriate har 10. Course Out	n prac dware	tical experience in the and software platf	the development of Clo forms that underpin such	ud-based	IoT syste			
Students will gain to appropriate har 10. Course Oute At the end of	n prac dware comes f the c	tical experience in the and software platf	the development of Clo forms that underpin such	ud-based	IoT syste			
Students will gain to appropriate har 10. Course Oute At the end of 1. Describe the Io	n prac dward comes f the c T and	tical experience in the and software platf s (COs): ourse student will b Cloud architecture	the development of Clo forms that underpin such	oud-based	IoT systement.	ems and e	exposure	
Students will gain to appropriate har 10. Course Oute At the end of 1. Describe the Io 2. Determine	to prace redward comes f the c T and e the r	tical experience in the and software platf (COs): ourse student will be Cloud architecture ight sensors and con	the development of Clo forms that underpin such be able to s	to use in	IoT systement.	ems and e	exposure	
Students will gain to appropriate har 10. Course Oute At the end of 1. Describe the Io 2. Determine 3. Deploy Cl	to prace dware comes f the c T and the r loud S	tical experience in the and software platf (COs): ourse student will be Cloud architecture ight sensors and con- ervices using differ	the development of Clo forms that underpin such be able to s mmunication protocols	to use in	l IoT systement.	ems and e	exposure	
Students will gain to appropriate har 10. Course Oute At the end of 1. Describe the Io 2. Determine 3. Deploy Cl 4. Implement	t praced ward dward comes for the comes for	tical experience in the and software platf a (COs): ourse student will be Cloud architecture ight sensors and con- bervices using differ d computing element	the development of Clo forms that underpin such be able to s mmunication protocols rent cloud technologies.	to use in es, web a	l IoT systement.	ems and e	exposure	
Students will gain to appropriate har At the end of 1. Describe the Io 2. Determine 3. Deploy Cl 4. Implement 5. Establish of	t praced wards of the comes of	tical experience in the and software platf a (COs): ourse student will be Cloud architecture ight sensors and con- bervices using differ d computing element nigration techniques	the development of Clo forms that underpin such be able to s mmunication protocols rent cloud technologies. nts such virtual machin	to use in es, web aj	l IoT systement.	ems and e	exposure	
Students will gain to appropriate har At the end of 1. Describe the Io 2. Determine 3. Deploy Cl 4. Implement 5. Establish of 6. Implement	comes f the c T and t cloud S t clou data n t secu	tical experience in the and software platf a (COs): ourse student will be Cloud architecture ight sensors and con- dervices using differ d computing element nigration techniques rity features to prot	the development of Clo forms that underpin such be able to s mmunication protocols rent cloud technologies. nts such virtual machin s from IoT devices to th	to use in es, web aj e cloud.	l IoT systement.	ems and e	exposure	

9. Implementation of CoAP protocol using Contiki OS

10. Energy, power, duty cycle calculation of IoT devices in Contiki OS

11. Simple application deployment in Google Cloud Engine or Juju Framework

12. Simple application deployment with PubNub cloud services.

NOSQL Databases

1. Name of the Dep	partment- Compute	er Science & Engineer	ing						
2. Course Name	NOSQL Databases	L	Т		Р				
3. Course Code		3	0		0				
4. Type of Course (use tick mark)	Core ()	PE(✓)		OE ()				
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every			
any)		tick marks)	(🗸)	0	Sem ()	Sem ()			
7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester)									
Lectures = 36 Tutorials = 0 Practical = 0									
8. Course Descript	8. Course Description								

This course is aimed to Explore the origins of NoSQL databases and the characteristics that distinguish them from traditional relational database management systems.

9. Learning Objectives:

1. Understand the architectures and common features of the main types of NoSQL databases (key-value stores, document databases, column-family stores, graph databases)

2. Discuss the criteria that decision makers should consider when choosing between relational and non-relational databases and techniques for selecting the NoSQL database that best addresses specific use cases.

10. Course Outcomes (COs):

At the end of the course student will be able to

1. Explain the detailed architecture, Database properties and storage requirements

2.Differentiate and identify right database models for real time applications

3.Outline Keyvalue architecture and characteristics

4.Design Schema and implement CRUD operations, distributed data operations

5.Compare data ware housing schemas and implement various column store internals

6. Choose and implement Advanced columnar data model functions for the real time applications

7. Develop Application with Graph Data model

11. Unit wise detailed content						
Unit-1	Number of	INTRODUCTION TO NOSQL CONCEPTS				
	lectures = 9					
D 1	1					

Data base revolutions: First generation, second generation, third generation, Managing Trans actions and Data Integrity, ACID and BASE for reliable database transactions, Speeding performance by strategic use of RAM, SSD, and disk, Achieving horizontal scalability with database sharding, Brewers CAP theorem.

Unit – 2	Number of	NOSQL DATA ARCHITECTURE PATTERNS
	lectures = 9	

NoSQL Data model: Aggregate Models- Document Data Model- Key-Value Data Model Columnar Data Model, Graph Based Data Model Graph Data Model, NoSQL system ways to handle big data problems, Moving Queries to data, not data to the query, hash rings to distribute the data on clusters, replication to scale reads, Database distributed queries to data nodes.

Unit – 3 Number of lectures = 9 KEY VALUE DATA STORES

From array to key value databases, Essential features of key value Databases, Properties of keys, Characteristics of Values, Key-Value Database Data Modeling Terms, Key-Value Architecture and implementation Terms, Designing Structured Values, Limitations of Key Value Databases, Design Patterns for Key-Value Databases, Case Study: Key-Value Databases for Mobile Application Configuration

lectures = 9 Document, Collection, Naming, CRUD operation, querying, indexing, Replication, Sharding, Consistency Implementation: Distributed consistency, Eventual Consistency, Capped Collection, Case studies: document oriented database: MongoDB and/or Cassandra 12. Brief Description of self-learning / E-learning component The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University. 13. Books Recommended Reference Books 1. An introduction to Information Retrieval, Christopher D.manning, Prabhakar Raghavan, Hinrich Schutze	Unit – 4	Number of	DOCUMENT ORIENTED DATABASE
Implementation: Distributed consistency, Eventual Consistency, Capped Collection, Case studies: document oriented database: MongoDB and/or Cassandra 12. Brief Description of self-learning / E-learning component The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University. 13. Books Recommended Reference Books		lectures = 9	
oriented database: MongoDB and/or Cassandra 12. Brief Description of self-learning / E-learning component The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University. 13. Books Recommended Reference Books	Document	, Collection, Namin	ng, CRUD operation, querying, indexing, Replication, Sharding, Consistency
 12. Brief Description of self-learning / E-learning component The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University. 13. Books Recommended Reference Books 	Implement	tation: Distributed c	consistency, Eventual Consistency, Capped Collection, Case studies: document
The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University. 13. Books Recommended Reference Books	oriented da	atabase: MongoDB an	nd/or Cassandra
The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University. 13. Books Recommended Reference Books			
lectures delivered by subject experts of SGT University. 13. Books Recommended Reference Books	12. Brief	Description of self	-learning / E-learning component
13. Books Recommended Reference Books	The stude	ents will be encoura	ged to learn using the SGT E-Learning portal and choose the relevant
Reference Books	lectures d	elivered by subject	experts of SGT University.
Reference Books			
	13. Books	s Recommended	
1. An introduction to Information Retrieval, Christopher D.manning, Prabhakar Raghavan, Hinrich Schutze	Reference	Books	
1. An introduction to Information Retrieval, Christopher D.manning, Prabhakar Raghavan, Hinrich Schutze			
	1. An intro	duction to Informat	tion Retrieval, Christopher D.manning, Prabhakar Raghavan, Hinrich Schutze
2. TheDesignandImplementationofModernColumn-OrientedDatabaseSystems,Daniel Abadi YaleUniversity	2 TheDesi	ionandImplementat	ionofModernColumn-OrientedDatabaseSystems Daniel Abadi YaleUniversity

3. Next Generation database: NoSQL and big data by GuyHarrison

		Databases Lab						
	Department- Computer Sc	Ŭ Ŭ		D				
3. Course	NOSQL Databases Lab	L	Т	Р				
Name								
4. Course	1. Course 0 0 2							
Code		U	U	2				
	5. Type of Course (use tick mark) Core () $PE()$ OE ()							
6. Pre-requi	site	7. Frequency	Even Odd ()	Either Every				
(if any) (use tick marks) $(\sqrt{)}$ Sem () Sem								
8. Total Nur	nber of Lectures, Tutorial	s, Practical (assumin	g 12 weeks of one	e semester)				
Lectures = 0		utorials = 0	Practical = 24					
	escription: This course is ai							
	t distinguish them from trad	itional relational data	base management	systems.				
9. Learning obje	ectives:							
	the architectures and common	•	•	bases (key-value				
stores, docum	ent databases, column-family s	stores, graph databases)						
	criteria that decision makers s		-					
relational data	bases and techniques for select	ting the NoSQL databas	se that best addresse	s specific use				
cases.								
10. Course Outco								
	the course student will be able							
-	detailed architecture, Database		-					
	e and identify right database m		ications					
-	value architecture and characte							
-	ema and implement CRUD ope		-					
-	ta ware housing schemas and i	-						
	implement Advanced columna		for the real time app	olications				
	plication with Graph Data mod	lel						
	periments							
•	dataintoNeo4jandconfigureNeo	o4j.Then, answer the fol	lowing questions us	ing the Cypher				
Query Language:								
a) I ist top 10 statio	ns with most outbound trips (S	how station name and r	number of trips)					
· ·	swithmostinboundtrips (Show s		· · ·					
· · · · · · · · · · · · · · · · · · ·	with most trips (Show starting			mber of trips)				
	mber(forexample13means1pm			• · ·				
Central"								
	code dataset at http://media.m		e 1	· ·				
	IongoDB. After importing the		ing questions by usi	ng aggregation				
	all the states that have a city cannot cities whose names include							
	ral zip codes. Find the city in ea	Ū.	number of zin codes	s and rank those				
	the states using the city population		number of zip coues	und runk those				
	ry on spatial information.							
3. Create a databas	e that stores road cars. Cars ha	ve a manufacturer ,a typ	pe. Each car has a m	aximum				

performance and a maximum torque value. Do the following: Test Cassandras replication schema and consistency models.

4. Master Data Management using Neo4j Manage your master data more effectively The world of master data is changing. Data architects and application developers are swapping their relational databases with graph databases to store their master data. This switch enables them to use a data store optimized to discover new insights in existing data,providea360-degree view of master data and answer questions about data relationships in real time.

5. Shopping Mall case study using cassendra, where we have many customers ordering items from themal land we have suppliers who deliver them their ordered items

Cyber Security & Forensics

Cyber Attacks Detection and Prevention Systems

1. Name of the Department- Computer Science & Engineering							
2. Course Name	Cyber Attacks	L	Т		Р		
	Detection and						
	Prevention Systems						
3. Course Code		3	0		0		
4. Type of Course (use tick mark)	Core ()	PE (✓)		OE ()		
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every	
any)		tick marks)	0	0	Sem ()	Sem ()	
7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester)							
Lectures = 36 Tutorials = 0 Practical = 0							
8. Course Descript	ion						

This course is aimed to understand the intrusion detection and prevention technologies, various types of network behavior analysis.

9. **Learning Objectives:**

1.To understand the honeypots, multiple IDS methods, tools to analyze various types of attacks like wireless attacks and their detection.

2.To understand the the attack source and also provides practical knowledge for dealing with intrusions in real world applications

10. Course Outcomes (COs):

The students will be able to:-

1.To understand the intrusion detection and prevention technologies, various types of network behavior analysis.

2.To understand the honeypots, multiple IDS methods, tools to analyze various types of attacks like wireless attacks and their detection.

3.To understand the the attack source and also provides practical knowledge for dealing with intrusions in real world applications.

11. Unit wise detailed content						
Unit-1	Numbe	r of	Introduction to IDPS			
	lectures	s = 9				
IDPS Technologies, Components and Architecture Implementation Uses of IDPS Technologies, Key Functions,						
Common I	Detection Methodolog	gies Signatı	are, Anomaly and Stateful Protocol Analysis, Types of IDPS Technologies 2			
Host and	Network IDPS: App	lication, Tr	ransport, Network and Hardware Layer attacks, Sniffing Network Traffic,			
Replay At	tacks, Command Inje	ection, Inter	rnet Control Message Protocol Redirect, DDoS, Dangers and defenses with			
Man-in th	ne Middle, Secure Se	ocket Layei	r attacks, DNS Spoofing, Defense- in-Depth Approach, Port Security, Use			
Encrypted	Protocols					
Unit – 2	Numbe	r of	Network Behaviour Analysis and Honeypots			
	lectures	s = 9				
Componen	nts and Architecture T	ypical, Net	work Architecture, Sensor Locations.			
Honeypots	: Honeynets- Gen I	, II and III	, Honeymole, Detecting the Attack - Intrusion Detection, Network Traffic			
Capture, Monitoring on the box, Setting up the Realistic Environment.						
Unit – 3	Number of	Working w	vith SNORT IDS			
	lectures = 9					

Introduction to Snort, Snort Alert Modes and Format, Working with Snort Rules, Rule Headers, Rule Options, The Snort Configuration File etc, Plugins, Preprocessors and Output Modules, Using Snort with MySQL.

Unit – 4	Number of	Multiple IDPS Technologies
	lectures = 9	

Need for multiple IDPS Technologies, Integrating Different IDPS Technologies -Direct and Indirect, Firewalls, Routers and Honeypots, IPS using IP Trace back - Probabilistic and De- terministic Packet Marking, Marking Wireless IDPS: WLAN Standards, WLAN Components, Threats against WLANs, 802.11 Wireless Infrastruc- ture Attacks, WEP Attacks, Wireless Client Attacks, Bluetooth Attacks, Cellphones, Personal Digital Assistance and Other Hybrid Devices Attack Detection, Jailbreaking.

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

Text Book(s)

1. Shui Yu, Distributed Denial of Service Attack and Defense, Springer, 2014

2.Bradd Lhotsky, OOSEC Host based Intrusion detection, PACKT Publication, 2013

Reference Books

1. John Hoopes, Virtualization for Security: Including Sandboxing, Disaster Recovery, High Availability, Forensic Analysis, and Honeypotting, Syngress, 2009.

2.Karen Scarfone and Peter Mell, Guide to Intrusion Detection and Prevention Systems (IDPS), NIST Special Publication 800-94, 2007

Cyber Attacks Detection and Prevention Systems Lab

1. Name of the		er Science & Engineerin	σ		
2. Course	Cyber Attacks Detec			Р	
Name	and Prevention La		^	1	
1 vanie	and Flevention La	0			
3. Course 0 0 2					
Code					
4. Type of Course (use tick mark) Core () $PE()$ OE					
5. Pre-requi	isite	6. Frequency	Even Odd	Either Every	
(if any)		(use tick marks)	()	Sem () Sem ()	
7. Total Nur	mber of Lectures, Tut	orials, Practical (assumi	ng 12 weeks of on	e semester)	
Lectures = 0		Tutorials = 0	Practical = 24		
		• 14 1 4 1		. 1	
	-	se os aimed to understand		ction and	
		es of network behavior and	alysis.		
9. Learning obje			1. 1		
	• 1	s, multiple IDS methods, t	ools to analyze var	rious types of	
	wireless attacks and the			1 1 1	
		ce and also provides pract	ical knowledge for	dealing with	
	real world applications	5			
10. Course Outco	. ,				
	ents will be able to:-		1 • • •	C (1	
		tion and prevention techno	biogies, various typ	bes of network	
behavior ana	-		1 .	1	
		ltiple IDS methods, tools t	o analyze various	types of attacks	
	attacks and their detec			1 1	
		ce and also provides pract	ical knowledge for	dealing with	
	real world application	5.			
	xperiments		1 • 1		
		lor models and apply on in			
		with Wire shark and Deep		-	
	raffic analysis with MR	TG and Performance mea	surement using PR	arg for different	
sensors.	· · · · · · · · · · · · · · · · · · ·				
		neynet and capturing intru	sions and Analyzii	ng the benchmark	
	rize the various kind of				
		and Design custom rules f	or intrusion detect	ion based on	
U	with SNORT IDS.				
-		eback schemes and Tools a	available for wirele	ess attack	
detection and pre	evention				

Cryptosystem

1. Name of the Dep	oartment- Comput	er Science & Engineer	ring			
2. Course Name	Cryptosystem	L	Т		Р	
3. Course Code		3	0		0	
4. Type of Course (ise tick mark)	Core ()	$\frac{\mathbf{v}}{\mathbf{PE}(\checkmark)}$		OE ()	
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	()	(✔)	Sem ()	Every Sem ()
	f Lectures Tutoris	als, Practical (assuming		· · /	0	Jenn ()
Lectures = 36	I Lectures, Tutoria	Tutorials = 0	Practic		semester)	
8. Course Descript	ion	1 0 10 10 10 10 10	Tractic	ai – 0		
*		oth understanding of cryp	tography th	eories ale	porithms and sys	stems
	d to provide an in-dej	our understanding of eryp	tography th	corres, arg	goritimis and sys	stems.
9. Learning Obje	ctives:					
1. To provide nec	essary approaches an	d techniques to develop p	rotection m	echanism	s in order to sec	ure computer
networks						
10. Course Outcon	nes (COs):					
The students	s will be able to:-					
1. Analyze and m	odel the Symmetric c	ryptographic algorithms f	for informat	ion secur	ity.	
2. Model the Pub	lic Key cryptosystem	8.				
3. Apply the Integ	grity standards for inf	ormation systems.				
4. Identify the aut	thentication schemes	for membership authoriza	tion.			
5. Understand ho	w to apply access con	trol techniques to authent	icate the da	ta.		
6. Analyze the Cr	yptanalysis technique	ès.				
11. Unit wise detai	led content					
Unit-1	Number of	Introduction to Wireless	Sensor Net	works		
	lectures = 9					
Introduction, Applic	ations of Wireless	Sensor Networks, WS	N Standard	ls, IEEE	802.15.4, Zig	gbee. Network
Architectures and Pro	tocol Stack – Networ	k architectures for WSN,	classificati	on of WS	N, protocol stac	k for WSN
Wireless Transmissi	on Technology and	Systems: Wireless Tr	ransmission	Techno	logy and Syst	ems – Radio
		gies. Wireless Sensor Tec	hnology - S	Sensor No	de Technology,	, Hardware and
Software, Sensor Tax						
Unit – 2	Number of	Medium Access Control	Protocols f	or Wireles	ss Sensor Netwo	orks
	lectures = 9					
	C Protocols, MAC P	rotocols for WSNs, Cont				
with Signaling - Dat	C Protocols, MAC P a-Gathering MAC, C	Contention-Free Protocols				
with Signaling - Dat	C Protocols, MAC P a-Gathering MAC, C					
with Signaling - Dat	C Protocols, MAC P a-Gathering MAC, C mination Protocol for of Deployment	Contention-Free Protocols				
with Signaling - Dat MAC, S-MAC. Disse Unit – 3 Number lectures	C Protocols, MAC P a-Gathering MAC, C mination Protocol for of Deployment = 9	Contention-Free Protocols Carge Sensor Network. nt and Configuration	: Low Er	ergy Ada	ptive Clusterin	g Hierarchy, B
with Signaling - Dat MAC, S-MAC. Disse Unit – 3 Number lectures Target tracking, Loc	C Protocols, MAC P a-Gathering MAC, C mination Protocol for of Deployment = 9 alization and Positio	Contention-Free Protocols Carge Sensor Network.	:: Low Er	ergy Ada	ptive Clusterin	g Hierarchy, E
with Signaling - Dat MAC, S-MAC. Disse Unit – 3 Number lectures Target tracking, Loc Self-Configuring Loc	C Protocols, MAC P a-Gathering MAC, C mination Protocol for of Deployment = 9 alization and Positio calization Systems. I	Contention-Free Protocols Carge Sensor Network. Int and Configuration ning, Coverage and Con	:: Low Er nectivity, S Data Manag	ergy Ada Single-hop ement fo	ptive Clusterin and Multi her wireless Sen	g Hierarchy, E op Localization sor Networks
with Signaling - Dat MAC, S-MAC. Disse Unit – 3 Number lectures Target tracking, Loc Self-Configuring Loc Routing Challenges a	C Protocols, MAC P a-Gathering MAC, C mination Protocol for of Deployment = 9 alization and Positio calization Systems. I and Design Issues in	Contention-Free Protocols Carge Sensor Network. Int and Configuration ning, Coverage and Con Routing Protocols and D	nectivity, S ata Manag	ergy Ada Single-hop ement fo Strategie	ptive Clusterin o and Multi ho r Wireless Sen s in Wireless So	g Hierarchy, E op Localization sor Networks ensor Networks
with Signaling - Dat MAC, S-MAC. Disse Unit – 3 Number lectures Target tracking, Loc Self-Configuring Loc Routing Challenges a Routing protocols: da and Gathering.	C Protocols, MAC P a-Gathering MAC, C mination Protocol for of Deploymen = 9 alization and Positio calization Systems. I and Design Issues in ata centric, hierarchic	Contention-Free Protocols Contention-Free Protocols Large Sensor Network. Int and Configuration ning, Coverage and Con Routing Protocols and D Wireless Sensor Network	nectivity, S ata Manag s, Routing	ergy Ada Single-hop ement fo Strategie	ptive Clusterin o and Multi ho r Wireless Sen s in Wireless So	g Hierarchy, B op Localizatior sor Networks ensor Networks
with Signaling - Dat MAC, S-MAC. Disse Unit – 3 Number lectures Target tracking, Loc Self-Configuring Loc Routing Challenges a Routing protocols: da	C Protocols, MAC P a-Gathering MAC, C mination Protocol for of Deploymen = 9 alization and Positio calization Systems. I and Design Issues in ata centric, hierarchic	Contention-Free Protocols Contention-Free Protocols Large Sensor Network. Int and Configuration ning, Coverage and Con Routing Protocols and D Wireless Sensor Network	efficient ro	ergy Ada Single-hop ement fo Strategie outing etc	ptive Clusterin o and Multi ho r Wireless Sen s in Wireless So	g Hierarchy, B op Localizatior sor Networks ensor Networks

Operating System Design Issues, TinyOS, Contiki – Task management, Protothreads, Memory and IO management Sensor Network Platforms And Tools: Sensor Node Hardware – Tmote, Micaz, Programming Challenges, Nodelevel Software Platforms, Node-level Simulators, State-centric Programming.

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

1. Kazem Sohraby, Daniel Minoli, Taieb Znati, "Wireless Sensor Networks, Technology, Protocols and Applications", Wiley, 2007

2. Holger Karl, Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.

3. Jun Zheng, Abbas Jamalipour, "Wireless Sensor Networks: A Networking Perspective", Wiley, 2009.

4. Ian F. Akyildiz, Mehmet Can Vuran, "Wireless Sensor Networks", Wiley, 2010

5. Ibrahiem M. M. El Emary, S. Ramakrishnan, "Wireless Sensor Networks: From Theory to Applications", CRC Press Taylor & Francis Group, 2013

Digital Forensics

• •	of the Dep	partment- Comput	ter Science & Engineer	ring			
2. Course Name Digital Forensics L T						P	
3. Course	Codo		3	0		0	
		ise tick mark)	Core ()	$\frac{\mathbf{U}}{\mathbf{PE}(\mathbf{V})}$		OE ()	
	quisite (if	ise tick mark)	6. Frequency (use				Every
any)	quisite (ii		tick marks)	()	(√)	Sem ()	Sem ()
	Number of	f Lectures. Tutoria	als, Practical (assumin				Sem ()
Lectures		,,	Tutorials = 0	Practic			
8. Course	e Descript	ion					
			lifferent digital forensic sy	stems and s	services		
01							
9.Learnn	ng Objecti	ives:					
1 To 1	learn the ba	sics of digital forensi	ics				
		file recovery using v					
		• •	scene and preserving digit	tal evidenc	e		
2.101			and preserving dig		-		
10. Cours	se Outcon	nes (COs):					
		will be able to:-					
1. Des	cribe what	a digital investigation	n is, the sources of digital	evidence. a	nd the lim	itations of foren	sics
		gal requirements for	-				
		ollection on backup					
		•	ch term from an imaged sy	stem			
		erpret network traffi					
-		-	ith mobile device forensic	8			
		-	ial and cloud computing				
11 TT 14	• • •						
11. Unit v	wise detail	led content					
11. Unit v Unit-1	wise detail		Overview of Computer F	Forensics Te	chnology		
	wise detai	led content	Overview of Computer F	Forensics Te	chnology)	
Unit-1		led content Number of lectures = 9	Overview of Computer F of Computer Forensics Te		chnology)	
Unit-1 Computer	Forensics F	led content Number of lectures = 9 Fundamental- Types of		chnology			ices
Unit-1 Computer	Forensics F	led content Number of lectures = 9 Fundamental- Types of	of Computer Forensics Te	chnology			ices
Unit-1 Computer	Forensics F	led content Number of lectures = 9 Fundamental- Types of	of Computer Forensics Te	chnology sics system	Compute	r Forensics Serv	
Unit-1 Computer Computer	Forensics F	led content Number of lectures = 9 Fundamental- Types of ystem and Services:	of Computer Forensics Te Types of Computer Foren	chnology sics system	Compute	r Forensics Serv	
Unit-1 Computer Computer Unit – 2	Forensics F Forensics s	led content Number of lectures = 9 Fundamental- Types of ystem and Services: Number of lectures = 9	of Computer Forensics Te Types of Computer Foren	chnology sics system dence Capt	Compute	r Forensics Serv Recovery and I	Data Seizure
Unit-1 Computer Computer Unit – 2 Data Back	Forensics F Forensics s	led content Number of lectures = 9 Fundamental- Types of ystem and Services: Number of lectures = 9 covery Test Disk Su	of Computer Forensics Te Types of Computer Foren Computer Forensics: Evi	chnology sics system dence Capt	Compute	r Forensics Serv Recovery and I	Data Seizure
Unit-1 Computer Computer Unit – 2 Data Back Collection Preserving	Forensics F Forensics s cup and Rea and Data S g the Digita	led content Number of lectures = 9 Fundamental- Types of ystem and Services: Number of lectures = 9 covery Test Disk Su eizure. l Crime scene, Com	of Computer Forensics Te Types of Computer Foren Computer Forensics: Evi	chnology sics system dence Capt ion, Hiding	Compute ure - Data and Reco	r Forensics Serv Recovery and I overing Hidden	Data Seizure Data, Evidenc
Unit-1 Computer Computer Unit – 2 Data Back Collection Preserving	Forensics F Forensics s cup and Rea and Data S	led content Number of lectures = 9 Fundamental- Types of ystem and Services: Number of lectures = 9 covery Test Disk Su eizure. l Crime scene, Com	of Computer Forensics Te Types of Computer Foren Computer Forensics: Evi ite, Data-Recovery Solut	chnology sics system dence Capt ion, Hiding	Compute ure - Data and Reco	r Forensics Serv Recovery and I overing Hidden	Data Seizure Data, Evidenc
Unit-1 Computer Computer Unit – 2 Data Back Collection Preserving Computer	Forensics F Forensics s cup and Rec and Data S g the Digita Forensic E Number	led content Number of lectures = 9 Fundamental- Types of ystem and Services: Number of lectures = 9 covery Test Disk Susseizure. l Crime scene, Com vidence. of Digital Fo	of Computer Forensics Te Types of Computer Foren Computer Forensics: Evi ite, Data-Recovery Solut	chnology sics system dence Capt ion, Hiding g steps, Le	Compute ure - Data and Reco	r Forensics Serv Recovery and I overing Hidden	Data Seizure Data, Evidenc
Unit-1 Computer Computer Unit – 2 Data Back Collection Preserving Computer Unit – 3	Forensics F Forensics s cup and Rea and Data S g the Digita Forensic E Number lectures	led content Number of lectures = 9 Fundamental- Types ystem and Services: Number of lectures = 9 covery Test Disk Subjecture. 1 Crime scene, Comvidence. of Digital Fo 9	of Computer Forensics Te Types of Computer Foren Computer Forensics: Evi ite, Data-Recovery Solut puter Evidence Processin rensics Tools and Platform	chnology sics system dence Capt ion, Hiding g steps, Le n	Compute ure - Data and Reco gal aspec	r Forensics Serv Recovery and I overing Hidden ts of Collecting	Data Seizure Data, Evidenc and Preserving
Unit-1 Computer Computer Unit – 2 Data Back Collection Preserving Computer Unit – 3	Forensics F Forensics s cup and Rea and Data S g the Digita Forensic E Number lectures	led content Number of lectures = 9 Fundamental- Types ystem and Services: Number of lectures = 9 covery Test Disk Subjecture. 1 Crime scene, Comvidence. of Digital Fo 9	of Computer Forensics Te Types of Computer Foren Computer Forensics: Evi ite, Data-Recovery Solut puter Evidence Processin	chnology sics system dence Capt ion, Hiding g steps, Le n	Compute ure - Data and Reco gal aspec	r Forensics Serv Recovery and I overing Hidden ts of Collecting	Data Seizure Data, Evidenc and Preserving
Unit-1 Computer Computer Unit – 2 Data Back Collection Preserving Computer Unit – 3	Forensics F Forensics s cup and Rea and Data S g the Digita Forensic E Number lectures	led content Number of lectures = 9 Fundamental- Types ystem and Services: Number of lectures = 9 covery Test Disk Subjecture. 1 Crime scene, Comvidence. of Digital Fo 9	of Computer Forensics Te Types of Computer Foren Computer Forensics: Evi ite, Data-Recovery Solut puter Evidence Processin rensics Tools and Platform	chnology sics system dence Capt ion, Hiding g steps, Le n	Compute ure - Data and Reco gal aspec	r Forensics Serv Recovery and I overing Hidden ts of Collecting	Data Seizure Data, Evidenc and Preserving
Unit-1 Computer Computer Unit – 2 Data Back Collection Preserving Computer Unit – 3 Tools (Enc	Forensics F Forensics s cup and Rea and Data S g the Digita Forensic E Number lectures = case)- Build	led content Number of lectures = 9 Fundamental- Types of ystem and Services: Number of lectures = 9 covery Test Disk Subjecture. 1 Crime scene, Comvidence. of Digital Fo 9 ling software, Installing	of Computer Forensics Te Types of Computer Foren Computer Forensics: Evi ite, Data-Recovery Solut puter Evidence Processin rensics Tools and Platforr ing Interpreters, Working	chnology sics system dence Capt ion, Hiding g steps, Le n with images	Compute ure - Data and Reco gal aspects and File	r Forensics Serv Recovery and I overing Hidden ts of Collecting	Data Seizure Data, Evidenc and Preserving
Unit-1 Computer Computer Unit – 2 Data Back Collection Preserving Computer Unit – 3	Forensics F Forensics s cup and Rea and Data S g the Digita Forensic E Number lectures	led content Number of lectures = 9 Fundamental- Types of ystem and Services: Number of lectures = 9 covery Test Disk Sume eizure. 1 Crime scene, Com vidence. of Digital Fo = 9 ling software, Installition of Network F	of Computer Forensics Te Types of Computer Foren Computer Forensics: Evi ite, Data-Recovery Solut puter Evidence Processin rensics Tools and Platform	chnology sics system dence Capt ion, Hiding g steps, Le n with images	Compute ure - Data and Reco gal aspects and File	r Forensics Serv Recovery and I overing Hidden ts of Collecting	Data Seizure Data, Evidenc and Preserving

Network Forensic Scenario: Destruction of email, damaging computer evidence and System Testing. Operating System Artifacts: Windows System Artifacts, Linux System Artifacts.

Mobile Forensics: Introduction to mobile forensics, understanding Android, Android forensic setup and predata extraction techniques, data recovery techniques

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

Text Books:

1. John R. Vacca, Computer Forensics: Computer Crime Scene Investigation, Second Edition, Charles River Media,2005

2. Cory Altheide, Harlan Carvey, Digital Forensics with Open Source Tools, British Library Cataloguing-in-Publication Data, 2011.

3. Sathish Bommisetty, Rohit Tamma, Heather Mahalik, Practical Mobile Forensics, Kindle Edition, 2014

4. Greg Gogolin, Digital Forensics Explained, CRC Press, 2013.

Reference Books

1. David Lilburn Watson, Andrew Jones, Digital Forensics Processing and Procedures, Syngress, 2013.

2 Bill Nelson, Amelia Philips, Christopher Steuart, Guide to Computer Forensics and Investigations, Fifth Edition, Cengage Learning, 2016

Digital Forensics Lab

1. Name of the De	epartment- Computer S	cience & Engineering	g			
2. Course	Digital Forensics Lab	L	r	Г]	P
Name						
3. Course		0		0		2
Code		v		U C	-	-
	urse (use tick mark)	Core ()	PE	(√)	OI	Ξ ()
				0.11	T 11	5
5. Pre-requisit	te	6. Frequency	Even	Odd	Either	Every
(if any)		(use tick marks)	0	(√)	Sem ()	Sem ()
7. Total Numb	ber of Lectures, Tutoria	ls, Practical (assumir	ng 12 wee	l eks of on	e semeste	er)
Lectures = 0		Tutorials = 0	Practic			,
	cription: This course is	aimed to learn about th	e differe	nt digital	forensic s	systems
and services	ivog.					
9. Learning object						
	asics of digital forensics					
	t file recovery using variou t processing the crime scen		arridanca			
10. Course Outcon	· · · · · ·	le and preserving digitar	evidence			
	ts will be able to:-					
	t a digital investigation is,	the sources of digital evi	dence, and	the limit:	ations of fo	orensics
	legal requirements for use of	-	actice, and	<i>x</i> une minu		
	collection on backup drive					
	based on a given search ter		n			
	nterpret network traffic	in nom un magea system				
-	allenges associated with m	obile device forensics				
	nsics challenges in social a					
11. List of Expe		1				
•	Deleted, fragmented, hidd	len)				
	cs (Determining the type		es from n	etwork lo	gs, encry	pted
files) 8 hours .	U 71					
3. OS Forensics (W	indows and Linux artifa	cts, memory, registry).				
4. OS Forensics (W	indows and Linux artifa	cts, memory, registry).				
5. Mobile Forensics	s(Tools for Android and	iOS).				
6. Data backup and	preservation and passwo	ord recovery				

Mobile and Wireless Security

1. Name of the Dep	oartment- Comput	er Science & Engineeri	ng			
2. Course Name	Mobile and	L	Т		Р	
	Wireless Security					
3. Course Code		3	0		0	
4. Type of Course (1	,	Core ()	PE(✓)	I	OE ()	
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	0	(✔)	Sem ()	Sem ()
	t Lectures, Tutoria	lls, Practical (assuming			semester)	
Lectures = 36	•	Tutorials = 0	Practic	aI = 0		
-	8. Course Description This course is aimed to Identify and analyze various the security issues in wireless mobile communication.					
		yze various the security iss	ues in wir	eless mob	ile communication.	
9. Learning Obje	ctives:					
1 To loom about	a a suina laga natu	uontra				
	securing wireless network	level security in wireless e	nvironmo	nt and its	related solution	
		level security in wheless e				
10. Course Outcon	s will be able to:-					
		and vanious issues at wingle	a and m	hilo notre	oult	
• •		and various issues at wirele				
•		onment including device, r				
-	-	tocols in wireless network			-	them.
	• •	nobile adhoc environment,	-		nent	
-		ronment and Report conserve	-			
	priate solution for sec	urity and Justify and demo	nstrate the	e usage of	preventive measures a	and
countermeasures.						
· · · · ·		arious environment in wire	less netwo	ork		
11. Unit wise detail		Conveiter Isonos in Mahila	a:	antion		
Unit-1	Number of lectures = 9	Security Issues in Mobile	Communi	cation		
Mahila Communicati		Wired Vs Wireless, Securit	. Iconoc i	n Winalaa	and Mahila Commu	niactions
		Levels:s Mobile Devices	•			
		plication Level Security i		-		
		pplications, Recent Security				WLAINS,
Unit -2	, , , , , , , , , , , , , , , , , , ,	Application Level Security				
	lectures = 9	ripplication Devel Security			K5	
Generations of Cellul		V Issues and attacks in cell	ılar netwo	orks GSM	GPRS and UMTS se	ecurity for
applications, 3G secur	•			, 0010		county 101
	, 11					
Unit – 3 Number	of Application	n Level Security in MANE	Ts			
lectures	= 9					
MANETs, applicatio	ns of MANETs, M	ANET Features, Security	Challen	ges in M	ANETs, Security A	ttacks on
MANETs.						
	· ·	Networks: Ubiquitous Con	puting, N	leed for N	ovel Security Scheme	es for UC,
Security Challenges for	or UC					

Unit – 4	Number of	Application Level Security in Heterogeneous Wireless Networks
	lectures = 9	

Heterogeneous Wireless network architecture, Heterogeneous network application in disaster management, Security problems and solutions in heterogeneous wireless networks.

Wireless Sensor Network Security: Attacks on wireless sensor networks and counter measures Prevention mechanisms: authenti- cation and traffic protection centralized and passive intruder detection decentralized intrusion detection

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

1. Pallapa Venkataram, Satish Babu, Wireless and Mobile Network Security, First Edition, Tata McGraw Hill, 2010.

2 Hakima Chaouchi, Maryline Laurent-Maknavicius, Wireless and Mobile Network Security Security Basics, Security in On-the-shelf and Emerging Technologies, Wiley, 2009

3 Tara M. Swaminathan and Charles R. Eldon, Wireless Security and Privacy- Best Practices and Design Techniques, Addison Wesley, 2002.

Mobile and Wireless Security Lab

2. Course M Name	Iobile and Wireless Security Lab	L	ŗ	Г]	P
3. Course Code		0		0		2
	e (use tick mark)	Core ()	PE (√)		OE ()	
5. Pre-requisite (if any)		6. Frequency (use tick marks)	Even (√)	Odd ()	Either Sem ()	Every Sem ()
7. Total Number	of Lectures, Tutorial	 s, Practical (assumin	ng 12 wee	eks of on	e semeste	er)
Lectures = 0	Т	'utorials = 0	Practical = 24			
2.Identify and analy	s: curing wireless networks ze various the security is ssues of application leve	ssues in wireless mobile			lated solu	tion
10. Course Outcomes	A A	r security in whetess en	VIIOIIIIEII			
The students w	vill be able to:-					
2. Analyze the threa	rement of security and v ats in wireless environme tacks at various protocol	ent including device, net	works and	d servers.		quired
e	he security requirement	for mobile adhoc enviro	onment, ul	oiquitous e		•
	acks in various environm	ent and Report consequ			eventive r	neasures
e	iate solution for security	and Justify and demons	trate the t	isuge of pr		
6.Select an appropriate and countermeasure	iate solution for security es.	·		0		
6.Select an appropriate of the formation	iate solution for security es. curity solution for variou	·		0		
6.Select an appropriate and countermeasure	iate solution for security es. curity solution for variou ments	s environment in wirele	ss networ	0		

Malware Analysis

1. Name of the Dep	oartment- Compute	er Science & Engineeri	ng				
2. Course Name	Malware Analysis	L	T P				
3. Course Code		3	0		0		
4. Type of Course (1	use tick mark)	Core ()	PE(✓)		OE ()		
5. Pre-requisite (if	,	6. Frequency (use	Even	Odd	Either	Every	
any)		tick marks)	(✔)	0	Sem ()	Sem ()	
7. Total Number of	f Lectures, Tutoria	ls, Practical (assuming	12 week	s of one s	semester)		
Lectures = 36		Tutorials = 0	Practic	al = 0			
8. Course Descript	ion						
This course is aimed	to recognize the type	es of malware through ana	lysis meth	nods			
9. Learning Obje	ctives:						
		lysis techniques 3.To prac	tice the ar	ndroid mal	ware analysis techniq	jues for	
real world application							
10. Course Outcon							
	s will be able to:-						
•		tand the behavior of malw	ares in rea	al world ap	oplications.		
-	erent malware analysis	-					
•	lware behavior in win						
	purpose of malware a	•					
	ious tools for malware	e analysis.					
11. Unit wise detailed content							
Unit-1	Unit-1 Number of Introduction						
lectures = 9							
		vsis, Techniques Static and				Backdoor,	
	Ũ	malware, Launcher, Rootk					
		Collection Methodology-I					
Acqui sition on a L	ive Windows System	, Identifying Users Logge	d into the	e System,	Non-Volatile Data C	Collection	

Acqui sition on a Live Windows System, Identifying Users Logged into the System, Non-Volatile Data Collection Inspect Prefetch Files, Examine the File System, Remote Registry Analysis, Examine Web Browsing Activities, Examine Cookie Files.

Unit – 2	Number of	Windows Basics	
	lectures = 9		
T (1 (') XX7'	1 1 1 1 1 1		\sim

Introduction to Windows Malware - Windows Basics Relevant to Malware Behavior-File System and Directory structure, Registry, Boot Sequence, Malware payloads.

Unit – 3	Number of	Dynamic Malware Analysis				
	lectures = 9					
Malware	activities, Self-Start	techniques, Essential setup for executing malware, Executing DLL files, Classifying				
Malware I	Based on their Behavio	or.				
Basic Stat	ic Analysis: Number S	System Static Analysis with File Attributes and PE Header Packet Identification				
Unit – 4	Unit – 4 Number of Advanced Static Analysis Reverse Engineering					
	lectures = 9					

Advanced Static Analysis Reverse Engineering Assembly level computing Standard x86 in structions, Introduction to IDA, OllyDbg, Advanced Malware Analysis Virus, Trojan. Parsing Basic Analysis of an APK.

Android Malware Analysis: APK File Structure Security Model Android Root Brief Description of Spreading and Dis- tribution Introduction to Android Debugging Tools and Their Usage Dex Structure Parsing Basic Analysis of an APK. Exploits MasterKey VulnerabilityFileNameLength Vulnerability Introduction to Obfuscation DEX code obfuscation

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

1.Cameron H. Malin, Eoghan Casey, James M. Aquilina and Curtis W. Rose, Malware Forensics Field Guide for Windows Systems, Syngress, Elsevier, 2012

2 Christopher C. Elisan, Advanced Malware Analysis, Tata McGraw Hill, 2015

3.Cameron H. Malin, Eoghan Casey, James M. Aquilina and Curtis W. Rose, Malware 3 Cameron H. Malin, Eoghan Casey, James M. Aquilina and Curtis W. Rose, Malware Forensics Field Guide for Linux Systems, Syngress, Elsevier, 2014.

4.Ken Dunham, Saeed Abu-Nimeh, Michael Becher and Seth Fogie, Mobile Malware Attacks and Defense, Syngress, Elsevier, 2009

5 John Aycock, Computer Viruses and Malware, Springer, 2006.

6 ErciFiliol, Computer Viruses: from theory to applications, Springer, 2005

Malware Analysis Lab

1.Name of the Do2.Course	Malware Analysis Lab	Science & Engineering	T	Р
Name			I	L L
3. Course		0	0	2
Code4.Type of Co	urse (use tick mark)	Care ()		OE ()
4. Type of Co	urse (use lick mark)	Core ()	PE (√)	UE ()
5. Pre-requisi	te	6. Frequency	Even Odd ()	Either Every
(if any)		(use tick marks)	(1)	Sem () Sem ()
	ber of Lectures, Tutor	ials, Practical (assuming		e semester)
Lectures = 0		Tutorials = 0	Practical = 24	
8. Course Des	cription: This course i	is aimed to recognize the	types of malware	through analysis
methods			e types of married	through analysis
Learning objective	es:			
	advanced malware analy	sis techniques		
2.To practice the and	droid malware analysis te	chniques for real world ap	plications	
9. Course Out	tcomes (COs):			
	ts will be able to:-			
		nd the behavior of malwar	es in real world app	lications.
-	ferent malware analysis to	-		
•	nalware behavior in windo			
	e purpose of malware ana	-		
	arious tools for malware a	nalysis.		
10. List of Exp				
1.Packet sniffing w				
1 0	ers through packet insp			
4. Basic Static Ana	bus Malware types and	bellavior.		
5. Basic Dynamic A	ows programs			
6. Analyzing windo	1 0			
 Analyzing winde Android malware 	e analysis.	isures.		
 Analyzing windo Android malward Data encoding and 	1 0			

Soft Computing Techniques

1. Name of the Department- Computer Science & Engineering						
2. Course Name	Soft Computing	L	Т		P	
	Techniques					
3. Course Code		3	0		0	
4. Type of Course (u	4. Type of Course (use tick mark)		PE (✓)		OE ()	
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)	any)		0	(✔)	Sem ()	Sem ()
7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester)						
Lectures = 36		Tutorials = 0	Practic	al = 0		
8. Course Descript	ion					

The concepts of Fuzzy logic (FL) will be covered first, followed by Artificial Neural Networks (ANNs) and optimization techniques using Genetic Algorithm (GA). Applications of Soft Computing techniques to solve a number of real life problems will be covered to have hands on practices.

12. Learning Objectives:

1. To introduce soft computing concepts and techniques and foster their abilities in designing appropriate technique for real-world problems.

2.To provide adequate knowledge of non-traditional technologies and fundamentals of artificial neural networks, backpropagation networks, fuzzy sets, fuzzy logic, genetic algorithms in solving social and engineering problems.3. o provide comprehensive knowledge of associative memory networks and adaptive resonance theory

10. Course Outcomes (COs):

The student will be able

1. Apply neural networks, bidirectional associative memories and adaptive resonance theory for solving different engineering problems.

2. Identify and describe soft computing techniques and build supervised learning and unsupervised learning networks.

3. Apply fuzzy logic and reasoning to handle uncertainty and solve various engineering problems.

4. Apply genetic algorithms to combinatorial optimization problems.

5. Evaluate and compare solutions by various soft computing approaches for a given problem

11. Unit wise detailed content

Unit-1	Number of	Introduction to Soft Computing & Neural Networks				
	lectures = 9					

Soft computing vs. hard computing, evolution of soft computing, features and types of soft computing, applications of soft computing, basics of machine learning.

Basic concepts of Neural Networks, Model of Artificial Neuron, Neural Network Architectures, Characteristics of neural networks, Learning Methods, Early neural network architectures, Application domains. Backpropagation network (BPN), Backpropagation Learning, Applications of BPN, Parameter selection, Variations of Backpropagation Algorithms

Unit – 2	Number of	Associative Memory Network & Unsupervised learning
	lectures = 9	

Autocorrelators, hetero-correlators: Kosko's discrete Bi-direction associative memory (BAM), Exponential BAM, Application of Character Recognition.

Adaptive Resonance Theory (ART), Classical ART Networks, Simplifies ART Architecture, Features, algorithms and

Illustration of ART1 and ART2 model, Related Applications

Unit – 3	Number of	Fuzzy Sets and Fuzzy Relation
	lectures = 9	

Fuzzy versus Crisp, Crisp Sets, Fuzzy sets, Membership functions, fuzzy set operations, properties of Fuzzy sets, Crisp Relations, Fuzzy relations –Fuzzy Cartesian product, Operations of Fuzzy Relations. Crisp Logic, Predicate Logic, Fuzzy Logic, Fuzzy Quantifiers, Fuzzy Inference, Fuzzy knowledge and rule-based

system, fuzzy decision making, Defuzzification, Application of fuzzy logic.

Unit – 4	Number of	Genetic Algorithms
	lectures = 9	

History of Genetic Algorithm, Basic concepts, Creation of offspring, working principles, encoding, fitness function, reproduction, Genetic modeling: Inheritance operator, crossover, inversion & deletion, mutation operator, Bitwise operator, Generational Cycle, Convergence of GA, Applications & advances in GA, Differences & similarities between GA & other traditional method, Hybrid systems, evolutionary computing, Genetic Algorithm based on Backpropagation networks-Implementation and comparison on performance of traditional algorithms with Genetic Algorithms.

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

S, Rajasekaran & G.A. Vijayalakshmi Pai, "Neural Networks, Fuzzy systems and evolutionary algorithms: Synthesis and Applications", PHI Publication, 2ndEd.2017.

Timothy J. Ross, "Fuzzy Logic with Engineering Applications", John Wiley and Sons, 3rded, 2011.

S.N. Sivanandam & S.N. Deepa, "Principles of Soft Computing", Wiley Publications, 3rded, 2018

Soft Computing Techniques Lab

1. Name of the De	partment- Computer	Science & Engineering	g	
2. Course	Soft Computing	L	Т	Р
Name	Techniques Lab			
3. Course		0	0	2
Code				
4. Type of Cou	urse (use tick mark)	Core ()	$\mathbf{PE}(\sqrt{2})$	OE ()
5. Pre-requisit	te	6. Frequency	Even Odd	Either Every
(if any)		(use tick marks)	0 (1)	Sem () Sem ()
7. Total Numb	or of Locturos Tutor	ials, Practical (assumin	a 12 wooks of	ono somostor)
Lectures = 0	er of Lectures, Tutor.	$\frac{1}{1} \frac{1}{1} \frac{1}$	$\frac{12}{12} \text{ weeks of}$ $Practical = 24$	
			- i i i i i i i i i i i i i i i i i i i	
8. Course Des	cription			
Learning objective	S:			
1. To introduce soft	computing concepts and	techniques and foster their	abilities in desig	gning appropriate
technique for real-we		-		
2.To provide adequa	te knowledge of non-trad	litional technologies and fu	indamentals of a	rtificial neural
· ·	•	ets, fuzzy logic, genetic al		
engineering problem		, , , , , , , , , , , , , , , , , , ,		8
0 01		ssociative memory networ	ks and adaptive i	resonance theory
^	comes (COs):			
The student will be a	, ,			
		ative memories and adapti	va rasonanca tha	ory for solving
different engineering		anve memories and adapti	ve resonance the	ory for solving
			1	
-	be soft computing technic	ques and build supervised	learning and uns	upervised learning
networks.	1 1 11			11
	-	incertainty and solve vario	ous engineering p	problems.
	orithms to combinatorial of			
A	•	soft computing approaches	s for a given prol	olem
10. List of Expe	eriments			
1.0				
		r of inputs and outputs. Tr	Ť	increment learning
e	0 0 1	d. Output the final weights		
1 0	.	al network without back p	10	
	*	al network with back prop	v	Also anosta fuzzz
	· · · · · ·	t and Difference operation		
relation by Cartesian j	product of any two fuzzy	sets and perform max-min	r composition on	any two nuzzy
	a calac parcon problem (tsp) using genetic algorith	me	
		ssion for a set of data poin		
	rtitions for real-life iris d			
7. Implement crisp pa		ataset		

Knowledge Engineering and Intelligent Systems

1. Name of the Department- Computer Science & Engineering						
2. Course Name	Knowledge	L	Т		Р	
	Engineering and					
	Intelligent Systems					
3. Course Code		3	0		0	
4. Type of Course (use tick mark)		Core ()	PE(✓)		OE ()	
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	0	(🗸)	Sem ()	Sem ()
7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester)						
Lectures = 36 Tutorials = 0 Practical = 0						
8. Course Descript	ion					

This course presents Artificial Intelligence methods, techniques and technologies which are applied already in the engineering of distributed systems in order to make them more flexible, adaptable and reconfigurable. It presents first a new paradigm of agent-based software design methodologies, where the analysis and design of distributed systems uses concepts from human societies and organizations (actor, role, responsibility, delegation of tasks) to model, in a flexible way, the interactions within the system and ways to recover from failures. Also we see how smart technologies are being implemented (logical reasoning, planners automatic mechanisms of negotiation and argumentation) to extend the semantic web services technologies towards their fullest potential, to make them more flexible and adaptive.

11. Learning Objectives:

1. To introduce the fundamentals of Knowledge Engineering and Intelligent Systems.

2.To provide deep understanding of Knowledge Engineering and Intelligent Systems.

3.To educate about all aspect of advanced models of KE and its application.

10. Course Outcomes (COs):

The student will be able

1. Demonstrate the knowledge of fundamental elements and concepts related to Intelligent Systems.

2.Demonstrate the fundamental and advanced modules of KE especially with Searching methods, Representation of knowledge and different reasoning techniques.

3. Ability to work with Predicate logic, back propagation with respect to the CNNs model parameters and implementing the models successfully.

4. Apply the higher order logics for handling uncertainty5. Implement an expert system to solve critical problems of medical domain, application of business intelligence and robotics in real life problems.

11. Unit wise d	letailed content			
Unit-1	Number of	Knowledge Engineering Concepts		
	lectures = 9			
Definition of Kn	owledge Engineering –Kn	owledge base Systems –Knowledge base systems Vs Database systems –		
Rules Vs Trigge	Rules Vs Triggers –Domain Expert –Expert Systems –Heuristic Search –A*, AO* and Mini-max algorithms -			
Knowledge representation -Semantic Networks -Frames-Conceptual Dependency -Scripts -Ontology -Semantic Web-				
Reasoning Meth	ods			
Unit – 2	Number of	First Order Logic		
	lectures = 9			

Role of Logic –Propositional logic –Predicate logic –Syntax –Semantics –Interpretations –Denotation –Satisfaction and models –Pragmatics –Explicit and Implicit Beliefs -Logical Consequence –Expressing Knowledge -Basic and Complex Facts –Terminological facts –Entailment –Abstract Individuals -Other Sorts of Facts –Resolution –The Propositional Case –Predicate Logic –Handling Variables and Quantifiers –First Order Resolution-Answer Extraction –Skolemization –Clause Form –Equality -Dealing with Computational Intractability -The First-Order Case -Herbrand Theorem -The Propositional Case -The Implications -SAT Solvers -Most General Unifiers -Other Refinement

Unit – 3	Number of	Knowledge Representation –Using Rules
	lectures = 9	

Procedural Versus Declarative Knowledge -Logic Programming -Forward versus Backward Reasoning –Rule Matching – Rules in Production Systems-Working Memory-Conflict Resolution-Rete's Algorithm –Discriminant Networks -Control Knowledge –Reasoning with Horn Clauses –Computing Selective Linear Definite clause resolution Derivatives –Rule Formation and Search Strategy –Algorithm Design –Specifying Goal order –Committing to Proof methods –Controlling Back Tracking –Negation as Failure –Dynamic Databases.

Unit – 4	Number of	Object Oriented Representation using Logic
	lectures = 9	

Object oriented Representation –Objects and Frames –Frame Formalism –Object Driven Programming with Frames –Generic and Individual Frames –Inheritance –Reasoning with Frames –Structured Descriptions – Descriptions –Description Language –Meaning and Entailment –Interpretations –Truth in an Interpretation – Computing Entailments –Simplifying the Knowledge base –Normalization –Structure Matching –Subsumption Computation –Taxonomies and Classification –Inheritance Networks –Handling Defeasible Inheritance

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

1. Ronald Brachman, Hector Levesque, Knowledge Representation and Reasoning, 1st Edition, Morgan Kaufmann, 2004 2.Richard A Frost, "Introduction to Knowledge Based Systems", Macmillan Publishing Co, 1986.

3.John F. Sowa, Knowledge Representation: Logical, Philosophical and Computational Foundations, Brooks Cole Publishing Co., Pacific Grove, CA, 20004.

4. Building Intelligent Systems A Guide to Machine Learning Engineering, Authors: Hulten, Geoff, Apress; 1st ed. edition (2018

Deep Learning and its Applications

Stochastic Models and Applications						
1. Name of the Dep	oartment- Computer S	Science & Engineeri	ng			
2. Course Name	Deep Learning and its	L	Т		Р	
	Applications					
3. Course Code		3	0		0	
4. Type of Course (use tick mark) Core () $PE(\sqrt{)}$				OE ()		
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	0	(√)	Sem ()	Sem ()
7. Total Number of	f Lectures, Tutorials, I	Practical (assuming	12 week	s of one	semester)	
Lectures = 36 Tutorials = 0 Practical = 0						
8. Course Descript	ion					

The course is aimed to understand the theoretical foundations, algorithms and methodologies of Neural Network

9.Learning Objectives:

1. To design and develop an application using specific deep learning models.

2. To provide the practical knowledge in handling and analysing real world applications.

10. Course Outcomes (COs):

Upon completion of the course, the students will be able to

1. Recognize the characteristics of deep learning models that are useful to solve real-world problems.

- 2. Understand different methodologies to create application using deep nets.
- 3. Identify and apply appropriate deep learning algorithms for analyzing the data for variety of problems.
- 4. Implement different deep learning algorithms
- 5. Design the test procedures to assess the efficacy of the developed model.

6. Combine several models in to gain better result

11. Unit wise detai	led content	
Unit-1	Number of	MACHINE LEARNING BAS

Unit-1	Number of	MACHINE LEARNING BASICS
	lectures = 9	

Learning algorithms, Maximum likelihood estimation, Building machine learning algorithm, Neural Networks Multilayer Perceptron, Back-propagation algorithm and its variants Stochastic gradient decent, Curse of Dimensionality

Machine Learning and Deep Learning, Representation Learning, Width and Depth of Neural Networks, Activation Functions: RELU, LRELU, ERELU, Unsupervised Training of Neural Networks, Restricted Boltzmann Machines, Auto Encoders, Deep Learning Applications

Unit – 2	Numb	er of	CONVOLUTIONAL NEUR	RAL NETWOR	KS	
	lecture	es = 9				
Architectu	iral Overview, Motiv	vation, Layers,	Filters, Parameter sharing,	Regularization,	Popular CNN	Architectures:
ResNet, A	lexNet - Application	ns				
Transfer le	earning Techniques,	Variants of CN	N: DenseNet, PixelNet.			
Unit – 3	Number of	SEQUENCE I	MODELLING – RECURRE	NT AND RECU	JRSIVE NETS	
	lectures = 9					

Recurrent Neural Networks, Bidirectional RNNs, Encoder-decoder sequence to sequence architectures - BPTT for training RNN, Long Short Term Memory Networks.

Unit – 4 Number of	AUTO ENCODERS & DEEP GENERATIVE MODELS
lectures = 9	

Under complete Auto encoder, Regularized Auto encoder, stochastic Encoders and Decoders, Contractive Encoders.

DEEP GENERATIVE MODELS: Deep Belief networks, Boltzmann Machines, Deep Boltzmann Machine, Generative Adversial Networks.

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

Text books:

 Ian Goodfellow, YoshuaBengio and Aaron Courville, "Deep Learning", MIT Press, 2017. Josh Patterson, Adam Gibson "Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017
 Umberto Michelucci "Applied Deep Learning. A Case-based Approach to Understanding Deep Neural Networks" Apress, 2018.

Reference Books :

1. Kevin P. Murphy "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012.

2. EthemAlpaydin,"Introduction to Machine Learning", MIT Press, Prentice Hall of India, Third Edition 2014. 3. Giancarlo Zaccone, Md. RezaulKarim, Ahmed Menshawy "Deep Learning with TensorFlow: Explore neural networks with Python", Packt Publisher, 2017.

4. Antonio Gulli, Sujit Pal "Deep Learning with Keras", Packt Publishers, 2017. Francois Chollet "Deep Learning with Python", Manning Publications, 2017.

Deep Learning and its Applications Lab

2. Course Deep Learning and its Name Applications Lab 3. Course Code 4. Type of Course (use tick mark)		Ũ	ts L		Т		Р	
		0		0	2			
		Core ()	PI	E(√)	O	OE ()		
5. Pre-requisite			6. Frequency	Even	Odd	Either	Every	
(if any)			(use tick marks)	0	(√)	Sem ()	Sem ()	
7. Total Num	ber of Le	ctures, Tutori	als, Practical (assumir	ng 12 we	eks of o	ne semeste	er)	
Lectures = 0			Tutorials = 0	Practi	cal = 24			
and methodologies o 9. Learning object	tives:		monifie door loarning mo	dala				
U U	· ·		specific deep learning mo ing and analysing real wo		cations			
10.Course Outcon			ing and analysing rear we	ond appn	cations			
Upon completion of	· ,		ill be able to					
 Understand diffe Identify and appl Implement differ 	erent metho y appropria ent deep le	dologies to crea ate deep learning arning algorithm		nets. g the data		-	ms.	
5. Design the test pi6. Combine several			cacy of the developed mo	del.				
11.List of Experin			juit					
 Train a Deep lear Object detection Recommendation 	ning mod using Cor n system f p learning	nvolution Neur rom sales data g model by tuni	using Deep Learning ng hyper parameters	trained n	nodel			
 5. Perform Sentime 6. Image generation 			graph using RNN					

Bio-Inspired Computing

1. Name of the Department- Computer Science & Engineering						
2. Course Name	Bio-Inspired	L	Т		Р	
	Computing					
3. Course Code		3	0		0	
4. Type of Course (u	ise tick mark)	Core ()	PE(✓)		OE ()	
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	0	(✔)	Sem ()	Sem ()
	f Lectures, Tutorials,				emester)	
Lectures = 36	-	Tutorials = 0	Practic	al = 0		
8. Course Descript						
	f-adapting methods also				•	
	and optimization based o	-				-
	l neural networks and mo					rial
-	ther, an overview of alter	native traditional metho	ods will a	so be inclu	ided.	
9.Learning Objectiv	9.Learning Objectives:					
1 T 1 1 1	····					
	indamentals of evolution					
	al neural systems and swa	•		ction.		
3.10 learn the genetic	algorithm and hybridization	tion with memetic algo	rithms.			
10. Course Outcon	nes (COs):					
Upon completion of the	he course, the students w	ill be able to				
1. Understand basic concepts of evolutionary algorithm.						
2. Understand the basic features of neural and immune systems and able to build the neural model.						
	ex and functional high-le					
	ational processes derived		U			
· ·	io-inspired algorithms lil		Swarm Oj	otimization	1.	
11. Unit wise detailed content						
Unit-1	Number of	INTRODUCTION TO	EVOLUT	TIONARY	ALGORITHM	
	lectures = 9					
Evolutionary algorithm	m, components of evolution	ionary algorithm repres	entation (definition	of individuals), Evalu	ation
function (Fitness func	tion), Population, parent	selection Mechanism,	Variation	Operators,	Survivor Selection	
Mechanism (Replacer	nent), Initialization, Terr	nination Condition, evo	olutionary	algorithm	case study Cellular sy	ystems,
	deling with cellular syste		ms, comp	utation wit	th cellular systems, ar	tificial
, , , , , , , , , , , , , , , , , , ,	hesis of cellular systems.					
Unit – 2		NEURAL SYSTEMS				
	lectures = 9					

Biological nervous systems, artificial neural networks, neuron models, architecture, signal encoding ,synaptic plasticity, unsupervised learning, supervised learning, reinforcement learning, evolution of neural networks, hybrid neural systems, case study Rewriting system, synthesis of developmental system, evolutionary rewriting systems, evolutionary developmental programs, biological immune systems, lessons for artificial immune systems, algorithms and applications, shape space, negative selection algorithm

Unit – 3	Number of	BEHAVIORAL SYSTEMS
	lectures = 9	

Behavior is cognitive science, behavior in AI, behavior based robotics, biological inspiration for robots, robots as biological models, robot learning, evolution of behavioral systems, learning in behavioral systems, co-evolution of body and control, towards self-reproduction, simulation and Reality.

Representation of Individuals, Mutation, Recombination, Population Models, Parent Selection, Survivor Selection, Example Application: Solving a Job Shop Scheduling Problem

Unit – 4	Number of	COLLECTIVE SYSTEMS
	lectures = 9	

Biological self-organization, Particle Swarm Optimization (PSO),ant colony optimization (ACO), swarm robotics, co-evolutionary dynamics, artificial evolution of competing systems, artificial evolution of cooperation, case study Introduction to Local Search, Lamarckianism and the Baldwin Effect, Structure of a Memetic Algorithm, Heuristic or Intelligent Initialization, Hybridization within Variation Operators: Intelligent Crossover and Mutation, Local Search Acting on the output from Variation Operators , Hybridization During the Genotype to Phenotype Mapping, Design Issues for Memetic Algorithms

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

 D. Floreanoand C. Mattiussi, "Bio-Inspired Artificial Intelligence", MIT Press, 2008.
 Tao Song, Pan Zheng, Mou Ling Dennis Wong, Xun Wang, "Bio-Inspired Computing Models and Algorithms", ISBN: 978-981-3143-19-7, world scientific, 2019F.

3. Neumann and C. Witt, "Bioinspired Computation in combinatorial optimization: Algorithms and their computational complexity", Springer, 2010

2. Course	Bio-Inspired Computin	g L	Т		P	
Name	Lab					
3. Course		0	0		2	
Code		Ū	U		-	
4. Type of C	Course (use tick mark)	Core ()	$\mathbf{PE}(\sqrt{2})$	O	OE ()	
5. Pre-requi	isite	6. Frequency	Even Od	ld Either	Every	
(if any)		(use tick marks)	() $()$) Sem ()	Sem ()	
					Ļ	
	mber of Lectures, Tutor	,	0		er)	
Lectures = 0		Tutorials = 0	Practical =	24		
8. Course D	escription: An introduct	on to self-adapting meth	ods also calle	ed artificial		
	-				bio-	
intelligence or machine learning. Schemes for classification, search and optimization based on bio- inspired mechanisms are introduced. This includes evolutionary computation, artificial neural						
inspired mechanis	6		-			
-	sms are introduced. This	ncludes evolutionary co	mputation, ar	rtificial neural		
networks and more	6	ncludes evolutionary co like e.g. swarm intellige	mputation, ar	rtificial neural		
networks and more	sms are introduced. This is re specialized approaches iew of alternative traditio	ncludes evolutionary co like e.g. swarm intellige	mputation, ar	rtificial neural		
networks and more Further, an overv Learning object	sms are introduced. This is re specialized approaches iew of alternative traditio ives:	ncludes evolutionary co like e.g. swarm intellige nal methods will also be	mputation, ar ence and artifing included.	rtificial neural		
networks and more Further, an overververververververververververververv	sms are introduced. This is re specialized approaches iew of alternative traditio	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular at	mputation, ar ence and artifing included.	rtificial neural		
networks and more Further, an overve Learning objection 1.To understand to 2.To learn the article	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolution ificial neural systems and systems	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular an varm optimization for feature	mputation, ar ence and artific included. atomata. are selection.	rtificial neural		
networks and more Further, an overver Learning objects 1.To understand to 2.To learn the arts 3.To learn the ger	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolutio ificial neural systems and sy- netic algorithm and hybridiz	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular an varm optimization for feature	mputation, ar ence and artific included. atomata. are selection.	rtificial neural		
networks and more Further, an overver Learning objects 1.To understand to 2.To learn the artist 3.To learn the gent 9. Course O	sms are introduced. This is re specialized approaches iew of alternative tradition ives: the fundamentals of evolution ificial neural systems and symetic algorithm and hybridiz putcomes (Cos):	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular an varm optimization for feature ation with memetic algorit	mputation, ar ence and artific included. atomata. are selection.	rtificial neural		
networks and more Further, an overver Learning objects 1.To understand to 2.To learn the artist 3.To learn the gent 9. Course O	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolutio ificial neural systems and sy- netic algorithm and hybridiz	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular an varm optimization for feature ation with memetic algorit	mputation, ar ence and artific included. atomata. are selection.	rtificial neural		
networks and mor Further, an overv Learning object 1.To understand t 2.To learn the arti 3.To learn the gen 9. Course O Upon completion	sms are introduced. This is re specialized approaches iew of alternative tradition ives: the fundamentals of evolution ificial neural systems and symetic algorithm and hybridiz putcomes (Cos):	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular at varm optimization for featu ation with memetic algorit will be able to	mputation, ar ence and artific included. atomata. are selection.	rtificial neural		
networks and mor Further, an overv Learning object 1.To understand t 2.To learn the arti 3.To learn the ger 9. Course O Upon completion 1.Understand basi	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolution ificial neural systems and sw netic algorithm and hybridiz Dutcomes (Cos): of the course, the students w	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular at varm optimization for featu ation with memetic algorit will be able to algorithm .	mputation, ar ence and artifi- included. atomata. are selection. hms.	rtificial neural		
networks and more Further, an overve Learning objection 1.To understand to 2.To learn the artion 3.To learn the gent 9. Course Of Upon completion 1.Understand basin 2.Understand the	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolution ificial neural systems and sw netic algorithm and hybridiz Dutcomes (Cos): of the course, the students w ic concepts of evolutionary a	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular an varm optimization for feature ation with memetic algorit will be able to algorithm . immune systems and able	mputation, ar ence and artifi- included. notomata. ne selection. hms.	rtificial neural	systems.	
networks and mor Further, an overv Learning object 1.To understand t 2.To learn the arti 3.To learn the gen 9. Course O Upon completion 1.Understand basi 2.Understand the 3. Explain how co	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolutio ificial neural systems and sw netic algorithm and hybridiz outcomes (Cos): of the course, the students w ic concepts of evolutionary a basic features of neural and	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular at yarm optimization for featu ation with memetic algorit will be able to algorithm . immune systems and able level phenomena can emer	mputation, ar ence and artifi- included. notomata. ne selection. hms.	rtificial neural	systems.	
networks and mor Further, an overv Learning objecti 1.To understand ti 2.To learn the arti 3.To learn the ger 9. Course O Upon completion 1.Understand basi 2.Understand the 3. Explain how co 4.Explain the corr	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolution ificial neural systems and sw netic algorithm and hybridiz Dutcomes (Cos): of the course, the students w ic concepts of evolutionary basic features of neural and omplex and functional high-	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular at varm optimization for featu ation with memetic algorit will be able to algorithm . immune systems and able level phenomena can emer d from neural models.	mputation, ar ence and artific included. notomata. ne selection. hms. to build the ne	rtificial neural ficial immune s eural model. evel interaction	systems.	
networks and mor Further, an overv Learning object 1.To understand t 2.To learn the arti 3.To learn the ger 9. Course O Upon completion 1.Understand basi 2.Understand the 3. Explain how co 4.Explain the com 5.Implement simp	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolutio ficial neural systems and sw netic algorithm and hybridiz outcomes (Cos): of the course, the students w ic concepts of evolutionary is basic features of neural and omplex and functional high- iputational processes derive	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular at varm optimization for featu ation with memetic algorit will be able to algorithm . immune systems and able level phenomena can emer d from neural models.	mputation, ar ence and artific included. notomata. ne selection. hms. to build the ne	rtificial neural ficial immune s eural model. evel interaction	systems.	
networks and mor Further, an overv Learning object 1.To understand t 2.To learn the arti 3.To learn the ger 9. Course O Upon completion 1.Understand basi 2.Understand the 3. Explain how co 4.Explain the com 5.Implement simp	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolution ificial neural systems and sw netic algorithm and hybridiz outcomes (Cos): of the course, the students w ic concepts of evolutionary is basic features of neural and omplex and functional high- nputational processes derive ole bio-inspired algorithms 1	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular at varm optimization for featu ation with memetic algorit will be able to algorithm . immune systems and able level phenomena can emer d from neural models.	mputation, ar ence and artific included. notomata. ne selection. hms. to build the ne	rtificial neural ficial immune s eural model. evel interaction	systems.	
networks and mor Further, an overv Learning objecti 1.To understand ti 2.To learn the arti 3.To learn the ger 9. Course O Upon completion 1.Understand basi 2.Understand the 3. Explain how co 4.Explain the corr 5.Implement simp 10. List of Ex 1. Python Review 2. Measuring (unce	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolution ificial neural systems and sw netic algorithm and hybridiz outcomes (Cos): of the course, the students w ic concepts of evolutionary is basic features of neural and omplex and functional high- nputational processes derive ole bio-inspired algorithms 1	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular at varm optimization for featu ation with memetic algorit will be able to algorithm . immune systems and able level phenomena can emer d from neural models.	mputation, ar ence and artific included. notomata. ne selection. hms. to build the ne	rtificial neural ficial immune s eural model. evel interaction	systems.	
networks and mor Further, an overv Learning objecti 1.To understand ti 2.To learn the arti 3.To learn the ger 9. Course O Upon completion 1.Understand basi 2.Understand the 3. Explain how co 4.Explain the com 5.Implement simp 10. List of Ex 1. Python Review 2. Measuring (unce 3. L-System	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolution ificial neural systems and synetic algorithm and hybridiz outcomes (Cos): of the course, the students we ic concepts of evolutionary a basic features of neural and omplex and functional high- inputational processes derive one bio-inspired algorithms 1 speriments ertainty based) information	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular at varm optimization for featu ation with memetic algorit will be able to algorithm . immune systems and able level phenomena can emer d from neural models.	mputation, ar ence and artific included. notomata. ne selection. hms. to build the ne	rtificial neural ficial immune s eural model. evel interaction	systems.	
networks and mor Further, an overv Learning object 1.To understand t 2.To learn the arti 3.To learn the ger 9. Course O Upon completion 1.Understand basi 2.Understand the 3. Explain how co 4.Explain the com 5.Implement simp 10. List of Ex 1. Python Review 2. Measuring (unce 3. L-System 4. Cellular Automa	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolution ificial neural systems and sw netic algorithm and hybridiz Dutcomes (Cos): of the course, the students w ic concepts of evolutionary basic features of neural and omplex and functional high- nputational processes derive ole bio-inspired algorithms 1 speriments ertainty based) information ata & Boolean Networks	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular at varm optimization for featu ation with memetic algorit will be able to algorithm . immune systems and able level phenomena can emer d from neural models.	mputation, ar ence and artific included. notomata. ne selection. hms. to build the ne	rtificial neural ficial immune s eural model. evel interaction	systems.	
networks and mor Further, an overv Learning objecti 1.To understand ti 2.To learn the arti 3.To learn the ger 9. Course O Upon completion 1.Understand basi 2.Understand the 3. Explain how co 4.Explain the com 5.Implement simp 10. List of Ex 1. Python Review 2. Measuring (unce 3. L-System	sms are introduced. This is re specialized approaches iew of alternative traditio ives: he fundamentals of evolution ificial neural systems and sw netic algorithm and hybridiz Outcomes (Cos): of the course, the students w ic concepts of evolutionary is basic features of neural and omplex and functional high- nputational processes derive ole bio-inspired algorithms I speriments ertainty based) information ata & Boolean Networks gorithms	ncludes evolutionary co like e.g. swarm intellige nal methods will also be nary theory and cellular at varm optimization for featu ation with memetic algorit will be able to algorithm . immune systems and able level phenomena can emer d from neural models.	mputation, ar ence and artific included. notomata. ne selection. hms. to build the ne	rtificial neural ficial immune s eural model. evel interaction	systems.	

Machine Learning for Signal Processing

1. Name of the Department- Computer Science & Engineering						
2. Course Name	Machine learning for	L	Τ		P	
	signal processing					
3. Course Code		3	0		0	
4. Type of Course (use tick mark)	Core ()	PE(✓)		OE ()	
5. Pre-requisite (if		6. Frequency (use	Even	Odd	Either	Every
any)		tick marks)	(✔)	0	Sem ()	Sem ()
7. Total Number of Lectures, Tutorials, Practical (assuming 12 weeks of one semester)						
Lectures = 36Tutorials = 0Practical = 0						
8 Course Description						

8. Course Description

This course aims at introducing the students to the fundamentals of machine learning (ML) techniques useful for various signal processing applications. It will discuss various mathematical methods involved in ML, thereby enabling the students to design their own models and optimize them efficiently. The lectures will focus on mathematical principles, and there will be coding based assignments for implementation. Prior exposure to ML is not required. The course will be focused on applications in signal processing and communication, and the theory will be tailored towards that end.

9.Learning Objectives:

1. To introduce the students with machine learning fundamentals for solving signal processing based applications.

- 2. To implement various mathematical methods involved in Machine Learning
- 3. To design their own models for the specific applications and optimize them efficiently

10. Course Outcomes (COs):

After successful completion of the course student will be able to:

- 1. Understand the mathematical methods for implementing signal processing and machine learning techniques
- 2. Perform the optimization techniques for various Machine Learning models
- 3. Develop methods of data representations for signal processing in machine learning environment
- 4. Apply Machine Learning models for linear systems

lectures = 9

- 5. Classify Machine Learning models for Non-linear systems
- 6.Apply basic machine learning models and prediction techniques on signals
- 7. Apply machine learning models in speech and image processing applications

11. Unit wise detailed content

Unit-1	Unit-1 Number of Mathematical Foundations				
	lectures = 9				
Introduction -Notion	of a signal-Basic digital	representation of data (text, speech, image, video)-Complex Exponential			
functions-Shannon Ir	formation Theory, Con	volution, Correlation and Covariance Functions-Wavelets-Fourier			
Transform -DCT and Wavelets, Gaussian Processes					
Unit – 2	Number of	Optimization Techniques			

Gradient ascent/descent-Basics of convex optimization-Constrained optimization, Convex sets, Hyperplanes/ Halfspaces, Lagrange multipliers, projected gradients-Bio-Inspired Algorithms, Dictionary based representations -Eigen representations –Karhunen Loeve Theorem -Principal Component Analysis-Properties-Independent Component Analysis (ICA)-ICA for representations and Denoising -Non-negative matrix factorization

Unit – 3	Number of	Linear Gaussian Systems and Signal Processing
	lectures = 9	

Delta and Related Functions-Linear Time Invariant Systems –LTI Signal Processing –Exploiting Statistical Stability for linear-Gaussian DSP-Kalman Filters.

Running Window filters-Recursive filters-Global Non-linear Filter –Hidden Markov Modelling –Homomorphic Signal Processing

Unit – 4	Number of	Statistical Machine Learning
	lectures = 9	

Statistical Machine Learning techniques -implementation for signal processing applications: Binary Classification -Linear classifiers –Perceptron's-–SVM-Linear, Kernel SVM -Multiclass Problem -K-means -Nearest Neighbors -Linear regression -Regularization, Machine Learning for Audio Classification -Time Series Analysis, LSTMs and CNNs. Machine Learning for Image Processing -Transfer Learning, Attention models, Attribute-based learning

12. Brief Description of self-learning / E-learning component

The students will be encouraged to learn using the SGT E-Learning portal and choose the relevant lectures delivered by subject experts of SGT University.

13. Books Recommended

1. Max A. Little, Machine Learning for Signal Processing: Data Science, Algorithms, and Computational Statistics, Oxford Publisher, 2019.

2. Paolo Prandoni, Martin Vetterli, Signal Processing for Communications (Communication and Information Sciences), CRC Press, 2008.

3. Stephen Boyd, LievenVandenberghe, Convex Optimization, Cambridge University Press, 2004

Machine Learning for Signal Processing Lab

1. Name of the Dep	oartment- Computer S	cience & Engineering	r S		
2. Course	Machine Learning for	L	Т	Р	
Name	Signal Processing Lab				
~ ~ ~					
3. Course		0	0	2	
Code4.Type of Court		Carro ()		ΟΕΟ	
4. Type of Cour	rse (use tick mark)	Core ()	$\mathbf{PE}(\sqrt{2})$	OE ()	
5. Pre-requisite		6. Frequency	Even Odd ()	Either Every	
(if any)		(use tick marks)	()	Sem () Sem ()	
-					
	er of Lectures, Tutoria			e semester)	
Lectures = 0	'	Tutorials = 0	Practical = 24		
8. Course Desci	ription: This course air	no at introducing the st	udants to the find	amontale of	
	L) techniques useful fo	0			
- .	l methods involved in N	• •	• • •		
	them efficiently. The lo	• •			
1	assignments for impler		-	L .	
	d on applications in sig				
tailored towards that		8 I I I I I I I I I I I I I I I I I I I	· · · · · · · · · · · · · · · · · · ·	j i i i j	
Learning objectives	•				
1. To introduce the s	students with machine I	learning fundamentals	for solving signal	processing based	
applications.		-			
2. To implement var	rious mathematical met	hods involved in Mach	ine Learning		
	wn models for the speci	ific applications and op	timize them effici	ently	
9. Course Outco					
	npletion of the course s				
	nathematical methods for	or implementing signal	processing and ma	achine learning	
techniques	······		···· · ··· · · · · · · · · · · · · · ·		
-	nization techniques for		U	a anvironment	
	of data representations		n machine learnin	genvironment	
4. Apply Machine Learning models for linear systems5. Classify Machine Learning models for Non-linear systems					
	ine learning models and		on signals		
	earning models in speec		-		
II J II J	8		5		
10. List of Exper	riments				
1.Implement Decision Tree learning					
2. Implement Logistic Regression					
3. Implement classification using Multilayer perceptron					
4. Implement classification using SVM					
5. Implement Adaboost					
6. Implement Bagging using Random Forests					
7. Implement k-nearest Neighbors algorithm					
8. Implement K-means, K-Modes Clustering to Find Natural Patterns in Data					
9. Implement Hierarchical clustering					

10. Implement Gaussian Mixture Model Using the Expectation Maximization

11. Implement Principle Component Analysis for Dimensionality Reduction

12. Evaluating ML algorithm with balanced and unbalanced datasets Comparison of Machine Learning algorithms